
MMX™ Technology Emulator
and Macro Package User’s
Guide
Order Number: 654905-001
Revision Revision History Date

-002 Original Issue 4/96

erms

ct

re, may
Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever,
including infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel’s T
and Conditions of Sale for such products.

Intel Corportation retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your produ
order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literatu
be obtained from:
Intel Corporation
P.O. Box 7641
Mt. Prospect IL 60056-764
or call 1-800-879-4683

*Other brands and names are the property of their respective owners.
Copyright © 1996, Intel Corporation, All Rights Reserved.

Contents

Chapter 1 Overview
About the Emulator .. 1-1

Methods of Emulation ... 1-1
About the Macro Package ... 1-2
Package Contents ... 1-2

Installing the Emulator.. 1-3
About this Manual .. 1-3
Related Documentation ... 1-4

Chapter 2 Win32* and CONSOLE32 Development Environments

VxD Method of Emulation Development Process.................. 2-1
Sample Application ... 2-3
Writing, Compiling, and Assembling the Code.................. 2-3
i

Linking the Object Files... 2-4
Executing .. 2-5
Debugging... 2-5

C Exceptions Method of Emulation Development Process ... 2-6
Sample Application ... 2-7
Writing, Compiling, and Assembling the Code.................. 2-8
Linking the Object Files... 2-9
Executing .. 2-10

ii

Emulator and
 Macro Package for MMX Technology User’s Guide

Debugging... 2-10
WATCOM Support for 32-bit Application Development....... 2-10

Chapter 3 Win16 Development Environment
VxD Method of Emulation Development Process.................. 3-1

Sample Application ... 3-2
Writing, Compiling, and Assembling the Code.................. 3-3
Linking the Object Files... 3-4
Executing .. 3-5
Debugging... 3-5

Chapter 4 VxD Development Environment
Development Process.. 4-1

Sample Application ... 4-2
Writing and Assembling the Code..................................... 4-3
Linking the Object Files... 4-3
Executing .. 4-3
Debugging... 4-4

Appendix A Writing MMX Code in C
Setting Options for the MSVC++ Compiler, Version 4.1 ... A-2

Appendix B Register Viewing Tool

Register Viewing Tool (RVT) ... B-1

Invoking the RVT: ... B-1
Register Display: ... B-2

Pop-up Menu.. B-3

Contents
Examples
 2-1 Assembly Source Code with MMX instructions 2-4
 2-2 C Source Code with an MMX Function Call and

In-line Assembly... 2-4
2-3 Assembly Source Code with MMX instructions 2-9
2-4 C Source Code with an MMX Function Call and

In-line Assembly... 2-9
3-1 Assembly Source Code with MMX Instructions 3-4
3-2 C Source Code with an MMX Function Call and

In-line Assembly... 3-4
A-1 Writing MMX Code Using In-line Assembly A-2

Figures
2-1 Application Development Process Using VxD

Emulation .. 2-2
2-2 Application Development Process Using

C Exceptions ... 2-7
3-1 Application Development Process Using

VxD Emulation ... 3-2
4-1 Development Process for Virtual Device Drivers using

VxD Emulation ... 4-2
B-1 Register Viewing Tool Display B-2
iii

• Virtual Device Driver (VxD) method

• C exception method

The VxD method of emulation is supported only on Windows 95 operating
systems. The C exception method of emulation is supported on both
Windows 95 and Windows NT operating systems.
1
X

es

 IA

ction.

Overview
About the Emulator

The MMX™ Technology Emulator is a tool designed to emulate MMX
instructions on Intel Architecture (IA) processors that do not support MM
technology. The emulator enables application developers to write their
applications using MMX code on any IA processor. The emulator behav
as an exception handler by handling MMX technology instructions that
generate invalid opcode exceptions. When an invalid opcode occurs on
processors, the emulator decodes the MMX technology instructions,
emulates them, and continues to execute the program at the next instru

The emulator supports Win32*, Console32, Win16 and VxD application
development environments. The emulator provides different levels of
support for Windows 95 and Windows NT operating systems.

Methods of Emulation

Emulation can be performed in one of two methods:
1-1

1-2

1MMX Te
chnology Emulator and Macro Package User’s Guide

The emulation process is handled differently by the two methods of
emulation. Using the VxD method, the emulator is incorporated in the
operating system and is external to the application. Using the C exception
method, the emulator is incorporated into the application in the
development process.

The VxD method of emulation offers MMX technology debugging support
that is provided by the Intel Register Viewing Tool (RVT) (see Appendix B,
for detail on the RVT). The RVT enables you to view and modify the
contents of the MMX registers. The RVT runs only on Windows 95. The
RVT is not accessible when using the C exception method of emulation.

About the Macro Package
The MMX Technology Macro Package is an include file provided with the
emulator. It enables you to use MMX instructions when writing your
assembly source code. This file includes Microsoft Macro Assembler
macros that embed MMX technology instructions into an assembly object
file. This macro generates the opcodes for the MMX technology
instructions.

The macro package requires Microsoft Macro Assembler, Version 6.11d or
later versions. MASM6.11d can be obtained from the Microsoft Windows
NT Device Driver Kit (DDK) or directly from Microsoft.

Package Contents
The MMX Technology Emulator and Macro Package, contains the
following files:
• Emulation files:
— viammxd.386

— mm.c

• Macro package include file: iammx.inc

• C exception include file: mmuser.h

• Register Viewing Tool: rvt.exe

erview 1
Ov

• Three examples located in the examples directory:

win32tst: Sample of a Win32 application with MMX instructions.

win16tst: Sample of a Windows 16-bit application with MMX

 instructions.

vmmxtst: Sample of a Virtual Device Driver with MMX instructions.

Installing the Emulator

The emulator is automatically installed when you run the Performance
Tools CD setup. It will continue to run automatically after rebooting your
system. In cases where the emulator is not installed in your system, add the
following line to your system.ini file:

[386Enh]

 device={path to viammxd.386}\viammxd.386

If you have installed a previous copy of this emulator on your system,
remove this line.

About this Manual
This manual steps you through the emulation process used to develop
applications using MMX instructions in the different development
environments. As a prerequisite, you should be familiar with the MMX
technology, C or C++, and assembly-language programming.

• Chapter 1, Overview

• Chapter 2, Win32 and CONSOLE32 Development Environments,
describes how to emulate applications in the Win32 and CONSOLE32
development environments.

• Chapter 3, Win16 Development Environment, describes how to
1-3

emulate applications in the Win16 development environment.

• Chapter 4, VxD Development Environment, describes how to develop
Virtual Device Drivers using MMX instructions.

• Appendix A, Writing MMX Code in C, describes the process for
writing MMX code in C using in-line assembly.

• Appendix B, Register Viewing Tool (RVT), describes the features and
functions of the Register Viewing Tool used to view MMX register
content in the debugging process.

1-4

1MMX Te
chnology Emulator and Macro Package User’s Guide

Related Documentation
Refer to the documents below for more information about the Intel
Architecture and IA MMX technology.

These documents are included in the Intel Performance Tools for MMX
Technology CD:

• Intel Architecture MMX™ Technology Application Notes.

• Intel Architecture MMX™ Technology Programmer’s Reference
Manual. Intel Corporation, order number 243007.

• Intel Architecture MMX™ Technology Computer Based Training
(CBT).

• Intel Reference C Compiler User’s Guide for Win32 Systems. Intel
Corporation, order number 34329

• Pentium® Processor Computer Based Training (CBT)

Other information about the Intel Architecture is available from Intel:

• Pentium® Processor Family User’s Manual, Volumes 1, 2, and 3. Intel
Corporation, order numbers 241428, 241429, and 241430.

• Pentium® Pro Processor Developer’s Manual, Volumes 1, 2, and 3.
Intel Corporation, order numbers 242690, 242691, and 242692.

Windows NT only supports emulation using C exceptions.

VxD Method of Emulation Development Process
This section steps you through the process of building Windows 32-bit
applications or 32-bit command-line applications with MMX code, using
VxD emulation.
2

Win32 and CONSOLE32
Development Environments

This chapter describes how to develop applications with MMX
instructions for Win32 environments (Windows 95 and Windows NT
platforms), and for CONSOLE32 environments, using the emulator and
macro package.

The Win32 development environment is used for building 32-bit
applications that run on Windows 95 and Windows NT operating systems.

The Console32 development environment is used for building 32-bit
command-line applications that run on Windows 95 and Windows NT
operating systems.

Two methods of emulation can be used in the Win32 and CONSOLE32
development environments (see section “Methods of Emulation” in
Chapter 1) .

• emulation using Windows Virtual Device Driver (VxD)

• emulation using C exceptions

Windows 95 supports both VxD emulation and emulation using C
exceptions.
2-1

2-2

2 MMX T
echnology Emulator and Macro Package User’s Guide

Figure 2-1 illustrates the development process for 32-bit applications and
32-bit command-line applications with MMX instructions, using this
method of emulation.

Figure 2-1 Application Development Process Using VxD Emulation

C Source Code
 Assembly

iammx.inc

Source Code

Object CodeObject Code

Executable code

Phase 2:
Linking

Phase 3:
Executing

Phase 1:
Writing,
Compiling, and
Assembling Compiler MASM6.11d

Linker

win32tst.c
mmtest.asm

win32tst.obj mmtest.obj

and Debugging win32tst.exe

ments 2
Win32 and CONSOLE32 Development Environ

Sample Application

A sample application using this method of emulation can be found in the
examples directory win32tst, provided with this package. A sample file of
the assembly source code (mmtest.asm) is located in the include
directory.

The filenames that are given as examples in the development steps and in
Figure 2-1, correspond to the filenames used in the sample application.

Writing, Compiling, and Assembling the Code

Follow these steps to write, compile, and assemble your code. These steps
correspond to Phase 1 in Figure 2-1.

1. Write or open your C language source files and assembly language
source files.

The C program file (sample filename: win32tst.c) is a 32-bit
application that calls a function with MMX instructions from the
assembly file. Example 2-2 is an example of C source code with an
MMX function call and in-line assembly code.

2. Include the macro package file (iammx.inc) in your assembly file
(sample filename: mmtest.asm). This enables the MASM 6.11d to
assemble the MMX instructions. Example 2-1 is an example of
assembly source code with MMX instructions.

3. Assemble the assembly code by running the MASM6.11d or later
versions to generate the object files (sample filename: mmtest.obj).

4. Compile the C code using any compiler to generate the object files
(sample filename: win32tst.obj). If you are using the Intel
Reference C Compiler or MSVC++ Compiler, Version 4.1, see
Appendix A “Writing MMX Code in C”, for instructions.
2-3

2-4

2 MMX T
echnology Emulator and Macro Package User’s Guide

Example 2-1 Assembly Source Code with MMX instructions

file: mmtest.asm

include iammx.inc

MMXFuntion Proc

movq mm0,mm1

movd mm0,eax

emms

ret

MMXFunction Endp

Example 2-2 C Source Code with an MMX Function Call and In-line Assembly

file: main.c

main()

{

//Call an MMX function call

 MMXFunction();

//In-line assembly MMX instructions

_asm{

pxor mm0,mm0

mov eax,0x2345

movd mm0,eax

emms

}

}

Linking the Object Files

Link the object files or libraries (sample filenames: win32tst.obj and
mmtest.obj) using the Microsoft Visual C++ Linker to produce an
executable (sample filename: win32tst.exe). The MMX instructions are
embedded in the VxD executable.

This step corresponds to Phase 2 of Figure 2-1.

ments 2
Win32 and CONSOLE32 Development Environ

Executing

When you run applications with MMX code, the MMX instructions
generate invalid opcodes on IA processors that do not support MMX
technology. The invalid opcodes are trapped and handled directly by the
VxD emulator. The VxD emulator emulates the MMX instructions by
performing operations equivalent to those performed by scalar instructions.

This step corresponds to Phase 3 of Figure 2-1.

Debugging

Currently the Intel DB32 Debugger and most of the latest versions of
compilers from new vendors provide the option to view the content of the
MMX registers. MSVC 4.1 debugging environment has indirect support for
MMX register display, which displays the register values in Hex only in a
64-bit format.

To view the MMX register content in the MSVC 4.1 debugging
environment, open the Watch Window, and type: stn,x, (where n can be
register number 0 through to 7).

The Register Viewing Tool (RVT) is a new tool that was designed to enable
you to display and modify the contents of the MMX registers during the
debugging process (see Appendix B for more detail on the RVT). Use the
RVT provided in the Performance Tools package if your debugger does not
have this capability.

The RVT is only accessible on Windows 95.

You can run the RVT during a regular debugging session from any
debugger.
2-5

To invoke the RVT do the following:

From the Windows Explorer, run bin\rvt.exe from the directory in
which the Performance Tools files are installed.

The RVT displays the contents of the MMX registers after emulation. You
can view and modify the contents of the MMX registers while stepping
through the code, line by line.

This step corresponds to Phase 3 of Figure 2-1.

2-6

2 MMX T
echnology Emulator and Macro Package User’s Guide

C Exceptions Method of Emulation Development
Process

C exceptions are constructs provided by the Microsoft C Compiler that
handle unexpected events and error conditions. The emulator uses the
_try_except construct to trap invalid opcodes and is built into the
executable file to emulate MMX instructions.

An application that uses C exceptions to trap and emulate MMX
instructions can run either on Windows 95 or Windows NT operating
systems.

This section steps you through the process of building Windows 32-bit
applications or 32-bit command-line applications with MMX code, using
the C exception method of emulation.

When using the C exception method of emulation, disable the VxD
emulator by removing the viammxd.386 file from your system.ini file if
it exists. You can also use the Register Viewer Tool (rvt.exe) to disable
the VxD emulation (See Appendix B for detail on the RVT).

Figure 2-2 illustrates the development process for applications with MMX
instructions, using this method of emulation.

ments 2
Win32 and CONSOLE32 Development Environ

Figure 2-2 Application Development Process Using C Exceptions

Object Code

C Source Code Assembly

iammx.inc

Source Code

Object CodeObject Code

Executable code

mm.c

Emulation
Source File

Compiler

The shaded area is optional.
mm.obj is provided in directory win32tst

Phase 2:
Linking

Phase 3:
Executing
and Debugging

Phase 1:
Writing,
Compiling, and
Assembling Compiler MASM6.11d

Linker

win32tst.c mmtest.asm

win32tst.obj mmtest.obj

win32tst.exe

mm.obj
2-7

Sample Application

A sample application using this method of emulation can be found in the
examples directory win32tst, provided with this package. A sample file of
the assembly source code (mmtest.asm) is located in the include
directory.

2-8

2 MMX T
echnology Emulator and Macro Package User’s Guide

The filenames that are given as examples in the development steps and
Figure 2-2, correspond to the filenames used in the sample application.

Writing, Compiling, and Assembling the Code

Follow these steps to write, compile, and assemble your code. These steps
correspond to Phase 1 in Figure 2-2.

1. Write or open your C language source file and assembly language
source file.

2. Include the macro package file (iammx.inc) in your assembly file
(mmtest.asm). This enables the MASM 6.11d to assemble the MMX
instructions. Example 2-3 is an example of assembly source code with
MMX instructions.

3. Assemble the assembly code by running the MASM6.11d or later
versions to generate the object files (sample filename: mmtest.obj).

4. Include the mmuser.h file in your C source code.

5. Place a function call within the_try/_except block that calls an
assembly routine with MMX instructions. Example 2-4 is an example
of C source code with an MMX function call and in-line assembly
code.

6. At the _except statement line type the following command:
MMX_HANDLE_EXCEPTION.

7. Include the emulation file mm.c located in the include directory of
this package in your project.

8. Define WIN_APP at the compiler command line or from the setting
options when compiling your C source file.

9. Compile the C code using any compiler to generate the object files

(sample filename: win32tst.obj). If you are using the Intel
Reference C Compiler or MSVC++ Compiler Version 4.1, see
Appendix A “Writing MMX Code in C”.

ments 2
Win32 and CONSOLE32 Development Environ

Example 2-3 Assembly Source Code with MMX instructions

file: mmtest.asm

include iammx.inc

MMXFuntion Proc

movq mm0,mm1

movd mm0,eax

emms

ret

MMXFunction Endp

Example 2-4 C Source Code with an MMX Function Call and In-line Assembly

file: main.c

#include “mmuser.h”

_try {

//Call an MMX function call

 MMXFunction();

//In-line assembly MMX instructions

_asm{

pxor mm0,mm0

mov eax,0x2345

movd mm0,eax

emms

}

}_except (MMX_HANDLE_EXCEPTION){}

}

2-9

Linking the Object Files

Link the object files or libraries using the Microsoft Visual C++ Linker to
produce an executable file. The MMX instructions are embedded in the
executable.

This step corresponds to Phase 2 of Figure 2-2.

2-10

2 MMX T
echnology Emulator and Macro Package User’s Guide

Executing

When you run your code and an MMX instruction executes (invalid
opcode), the operating system transfers the exception to the _except {}
block. The MMX_HANDLE_EXCEPTION macro then calls functions in
the emulator source file (mm.c) that decode and execute MMX instructions.

This section corresponds to Phase 3 of Figure 2-2.

Debugging

Use your development tool debugger to debug your MMX application. The
Register Viewer Tool is not accessible on Windows NT.

To view the MMX register content, open the Variable WatchWindow to
view the content of pMmReg[0-7 array]. You can only view the contents
of the MMX registers, you cannot modify them.

This section corresponds to Phase 3 of Figure 2-2.

WATCOM Support for 32-bit Application Development
Watcom is releasing a new version of tools with MMX technology support,
the current Watcom working environment does not have macro package
support. The current versions of Watcom tools can be used with the VxD
method of emulation on Windows 95, with the exception of the WASM
(WATCOM Assembler) which does not provide MMX technology support.
Assembling your MMX code can only be done using the MASM6.11d
(Microsoft Assembler).

The WATCOM tools can be used for the following:

• Compiling C code
• Linking

• Debugging

ments 2
Win32 and CONSOLE32 Development Environ

The WATCOM debugger can be used in the C exceptions method of
emulation on Windows NT. For settings, follow these instructions:

1. From the WATCOM IDE (Integrated Development Environment) in
the Options menu, select Debug switches.

2. Choose the TrapFile option and in the text field type the following
command: std;2. By default the WATCOM debugger traps the
exceptions before the user. The std;2 command enables the user to
trap the exceptions first.

3. From the IDE, run the debugger.

4. For single stepping through your code; from the Run menu choose the
option: Next Sequential (x), or alternatively press the shortcut key X.
2-11

3

Win16 Development
Environment

This chapter describes how to develop 16-bit applications with MMX
instructions in the Win16 environment, using the emulator and macro
package.

The Win16 environment only supports emulation for MMX technology
applications running on Windows 95 operating systems, using the VxD
method of emulation. You cannot use the C exception method of emulation
in this development environment.

Win16 development environment is used to develop 16-bit applications for
Windows 3.1.

VxD Method of Emulation Development Process
This section steps you through the process of building 16-bit applications
with MMX code, using VxD emulation.

Figure 3-1 illustrates the development process for 16-bit applications with
MMX instructions, using this method of emulation.
3-1

3-2

3MMX Te
chnology Emulator and Macro Package User’s Guide

Figure 3-1 Application Development Process Using VxD Emulation

C Source Code
 Assembly

iammx.inc

Source Code

MASM6.11d

Object CodeObject Code

Linker

Executable Code

Compiler

Phase 2:
Linking

Phase 1:
Writing,
Compiling, and
Assembling

Phase 3:
Executing
and Debugging

win16tst.c mmtest.asm

win16tst.obj mmtest.obj

win16tst.exe
Sample Application

A sample application using this method of emulation can be found in the
examples directory win16tst, provided with this package. A sample file of
the assembly source code (mmtest.asm) is located in the include
directory.

nment 3
Win16 Development Enviro

The filenames that are given as examples in the development steps and in
Figure 3-1, correspond to the filenames used in the sample application.

Writing, Compiling, and Assembling the Code

Follow these steps to write, compile, and assemble your code. These steps
correspond to Phase 1 in Figure 3-1.

1. Write or open your C language source file and assembly language
source file.

The C program file (sample filename: win16tst.c) is a Windows
16-bit application that calls a function with MMX instructions from the
assembly file. Example 3-2 is an example of C source code with an
MMX function call and in-line assembly code with MMX instructions.

2. Define APP_16BIT at the assembly command line.

3. Include the macro package file (iammx.inc) in your assembly file
(sample filename: mmtest.asm). This enables the MASM6.11d to
assemble the MMX instructions. Example 3-1 is an example of
assembly source code with MMX instructions.

4. Assemble the assembly code by running the MASM6.11d or later
versions to generate the object files (sample filename: mmtest.obj).

5. Compile the C code using a compiler that generates 16-bit code to
generate the object files (sample filename: win16tst.obj). If you are
using the Intel Reference C Compiler or MSVC++ Compiler Version
4.1, see Appendix A “Writing MMX Code in C”, for further
instructions.
3-3

3-4

3MMX Te
chnology Emulator and Macro Package User’s Guide

Example 3-1 Assembly Source Code with MMX Instructions

file: mmtest.asm

APP_16BIT EQU 1

include iammx.inc

MMXFuntion Proc

movq mm0,mm1

movd mm0,ax

emms

ret

MMXFunction Endp

Example 3-2 C Source Code with an MMX Function Call and In-line Assembly

file: main.c

main()

{

//Call an MMX function call

 MMXFunction();

//In-line assembly MMX instructions

}

}

Linking the Object Files

Link the object files or libraries (sample filenames: win16tst.obj and
mmtest.obj) using a linker that supports 16-bit development
environments to produce an executable (sample filename: win16tst.exe).

The MMX instructions are embedded in the VxD executable.

This step corresponds to Phase 2 of Figure 3-1.

nment 3
Win16 Development Enviro

Executing

When you run applications with MMX code, the MMX instructions
generate invalid opcodes on IA processors that do not support MMX
technology. The invalid opcodes are trapped and handled directly by the
VxD emulator. The VxD emulator emulates the MMX instructions by
performing operations equivalent to those performed by scalar instructions.

This step corresponds to Phase 3 of Figure 3-1.

Debugging

Use a 16-bit debugger (e.g., Microsoft Visual C++1.v5x) to debug your
code. To view the MMX register contents use the Register Viewing Tool
(RVT) (see Appendix B for more detail on the RVT).

You can invoke the RVT during a regular debugging session from any
16-bit debugger.

To invoke the RVT, do the following:

From the Windows Explorer, run bin\rvt.exe from the directory in
which the Performance Tools files are installed.

The RTV displays the contents of the MMX register after emulation. This
enables you to view and modify the MMX register content while stepping
through the code, line by line.

This step corresponds to Phase 3 of Figure 3-1.
3-5

4

VxD Development
Environment

This chapter describes how to develop Virtual Device Drivers with MMX
instructions, using the emulator and macro package.

A Virtual Device Driver (VxD) is a 32-bit ring 0 driver.

VxD development is only supported by the VxD method of emulation and
only uses assembly language source code. The development process is
similar to that as the Win32 development environment, without processing
the C source code.

An application that uses VxD emulation can only run on Windows 95.

Development Process
This section steps you through the process of building Virtual Device
Drivers with MMX code, using VxD emulation.

Figure 4-1 illustrates the development process for developing a Virtual
Device Driver with MMX instructions, using this method of emulation.
4-1

4-2

4 MMX T
echnology Emulator and Macro Package User’s Guide

Figure 4-1 Development Process for Virtual Device Drivers using VxD
Emulation

 Assembly

iammx.inc

Source Code

MASM6.11d

Object Code

Linker

Ring0 VxD

Phase 2:
Linking

Phase 1:
Writing,
Compiling, and
Assembling

Phase 3:
Executing
and Debugging

mmtest.asm

mmtest.obj

vmmvxd.386
Sample Application

A sample application using this method of emulation can be found in the
examples directory vmmxtst, provided with this package. A sample file of
the assembly source code (mmtest.asm) is also located in the vmmxtst
directory.

The filenames that are given as examples in the development steps and
Figure 4-1, correspond to the filenames used in the sample application.

nment 4
VxD Development Enviro

Writing and Assembling the Code

Follow these steps to write and assemble your code. These steps correspond
to Phase 1 in Figure 4-1.

1. Write or open your assembly language source file.

2. Include the macro package file (iammx.inc) in your assembly file.
This enables the MASM 6.11d to assemble the MMX instructions.

3. Assemble the assembly code by running the MASM6.11d or later
versions to generate the object files (sample filename: mmtest.obj).

Linking the Object Files

Link the object files or libraries using the standard tools, for example,
Windows 3.1 DDK or the latest version of Windows 95 VxD DDK, to
produce a Virtual Device Driver. The MMX instructions are embedded in
the VxD executable.

This step corresponds to Phase 2 of Figure 4-1.

Executing

Install the VxD emulator before executing. To install the VxD emulator,
add the following line to your system.ini file:

[386Enh]

 device={path to viammxd.386}\viammxd.386

MMX instructions generate invalid opcodes on IA processors that do not
support MMX technology. The invalid opcodes are trapped and handled
4-3

directly by the VxD emulator. The VxD emulator emulates the MMX
instructions by performing operations equivalent to those performed by
scalar instructions.

This step corresponds to Phase 3 of Figure 4-1.

4-4

4 MMX T
echnology Emulator and Macro Package User’s Guide

Debugging

Soft-Ice/W*, Version 2.0b or later versions have debugging support for
MMX technology using VxD emulation. The debugger can be obtained
directly from Nu-Mega Technologies, Inc. This tool allows you to view and
modify the MMX register contents after emulation.

This step corresponds to Phase 3 of Figure 4-1.

A

ly

ge

X
Writing MMX Code in C
Currently there are two compilers that have added support for MMX
technology:

• The Intel Reference C Compiler for Win32 Systems

• The Microsoft Visual C++ Compiler, Version 4.1

The Intel Reference C Compiler provides support for MMX technology by
enabling you to write MMX code using in-line assembly support or using
MMX intrinsics. See the Intel Reference C Compiler User’s Guide for
Win32 Systems, included in this CD, for complete details and operating
instructions.

The Microsoft Visual C++ Compiler, Version 4.1 provides in-line assemb
support. It does not support MMX intrinsics.

When compiling your in-line assembly with MMX code, the macro packa
is not required.

Example A-1 shows an example of how to use in-line assembly with MM
instructions in your C source file.
A-1

A-2

A MMX
 Technology Emulator and Macro Package User’s Guide

Example A-1 Writing MMX Code Using In-line Assembly

main()

{

_asm{

pxor mm0,mm0

mov eax,0x2345

movd mm0,ea

emms

}

}

Setting Options for the MSVC++ Compiler, Version 4.1

To enable the MSVC++ Compiler to detect the MMX instructions, you
need to specify the following option at the compiler command line: /G5M

To set the /G5M option from the IDE, do the following:

1. From the Build menu, under the Setting option, select the C/C++ tab.

2. In the Setting For window, press the Target button and select one of the
targets.

3. In the Project Options text box, at the end of the line add the option
/G5M.

 device={path to viammxd.386}\viammxd.386.

To invoke the RVT:

From the Windows Explorer, run bin\rtv.exe from the directory in
which the Performance Tools are installed.

The RVT displays the contents of the MMX registers after emulation
B

e
Register Viewing Tool
The Register Viewing Tool (RVT) is a Windows 95 applet that allows you
to view and modify the content of the MMX registers. RVT works in
conjunction with the VxD emulator and uses the debugging features (INT1
& INT3) of the existing IA processor.

RVT displays the contents of the MMX registers after each single-step
(INT1) or breakpoint (INT3). In processors without MMX technology, the
MMX registers are emulated. On a Pentium® processor with MMX
technology, the contents of the actual MMX registers are displayed.

Invoking the RVT:

You can invoke the RVT from any debugging session, after installing th
VxD emulator.

If the VxD emulator is not installed, add the following line to your
system.ini file:

[386Enh]
B-1

.

B-2

B MMX

 Technolgoy Emulator and Macro Package User’s Guide

Register Display:

Figure B-1 shows the RVT Display window. The options and features are
described below.

Figure B-1 Register Viewing Tool Display

The Register Viewing Tool displays the contents of the MMX registers in
either byte, word or doubleword format.

• MM0 - MM7: Displays one of the following:

— Displays the contents of the MMX register of the debugged
application. When the values of the MMX register change, the
new values are displayed in red.

— No Context: Displays No Context if no application is debugged, or

Segment Register
Extended Instruction Pointer

Register contents (MM0-MM7)

This pop-up menu is accessed by
pressing the right mouse button within
the gray area
if the application is terminated.

— Empty: Displays Empty when the tag bits of the corresponding
MMX register are empty.

• Segment Register (CS): Displays the trapped segment register address.

• Extended Instruction Pointer (EIP): Displays the trapped EIP. RVT
looks for a change in the EIP and then updates the MMX registers. You
should monitor the EIP to insure that the VxD does not trap an INT1 or
INT3 that is generated by another application.

Tool B
Register Viewing

• Read button: Reads the contents of the MMX registers and updates the
display. This is useful when the Enable Timer option is disabled.

• Write button: Writes the value you entered in the display into the MMX
register.

• Close button: Closes the applet.

Pop-up Menu

The Pop-up menu is accessed by pressing the right mouse button within the
gray area (see Figure B-1). This menu has the following options:

• Stay on Top: Keeps the RVT window on top of all other windows.

• Byte Format: Displays the data in the MMX registers as bytes. In this
format, each MMX register contains eight bytes.

Word Format: Displays the data in the MMX registers as 16 bits. In
this format, each MMX register contains four words.

DWord Format: Displays the data in the MMX registers as 32 bits. In
this format, each MMX register contains two doublewords.

• Enable VxD Emulation: Toggles the VxD Emulation, available only on
processors without MMX technology. When enabled, the VxD traps
and emulates the MMX instruction. When disabled, no emulation is
performed.

• Enable Timer: Toggles the use of the timer. When enabled, the MMX
registers are updated automatically every second. When disabled, use
the Read button to update the display.
B-3

	MMX(tm) Technology Emulator and Macro Package User's Guide
	Overview
	About the Emulator
	Methods of Emulation

	About the Macro Package
	Package Contents
	Installing the Emulator

	About this Manual
	Related Documentation

	Win32 and CONSOLE32 Development Environments
	VxD Method of Emulation Development Process
	Sample Application
	Writing, Compiling, and Assembling the Code
	Linking the Object Files
	Executing
	Debugging

	C Exceptions Method of Emulation Development Proce...
	Sample Application
	Writing, Compiling, and Assembling the Code
	Linking the Object Files
	Executing
	Debugging

	WATCOM Support for 32-bit Application Development

	Win16 Development Environment
	VxD Method of Emulation Development Process
	Sample Application
	Writing, Compiling, and Assembling the Code
	Linking the Object Files
	Executing
	Debugging

	VxD Development Environment
	Development Process
	Sample Application
	Writing and Assembling the Code
	Linking the Object Files
	Executing
	Debugging

	Writing MMX Code in C
	Setting Options for the MSVC++ Compiler, Version 4...

	Register Viewing Tool
	Invoking the RVT:
	Register Display:
	Pop-up Menu

