
Page - 1 , 10/29/96

PMON - Performance Monitoring Utility V2.2
Users Guide

10/15/96

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including infringement
of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this
document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark or products.

*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION 1995 CG-041493

Page - 2 , 10/29/96

1. OBJECTIVE: ..3

2. SYSTEM REQUIREMENTS: ..3

3. PMON INSTALLATION: ..3

4. MAIN OPERATION MODES:...3

4.1 USER INTERFACE ...4
4.2 COMMAND LINE INTERFACE ..4
4.3 PROGRAMMING INTERFACE ...5

5. PMON FEATURES...5

5.1 CURRENT FILES AND VERSION NUMBERS:..5
5.2 THE VXD ..5
5.3 THE DLL ..6
5.4 THE UTILITY MAIN FEATURES..6

5.4.1 Event Selection ...6
5.4.2 Start/Stop..7
5.4.3 Additional Settings..8

5.5 COMMAND LINE OPERATION ...9
5.5.1 Command Line Parameters...9
5.5.2 Command Line Examples..11

6. PMON DATA FILES ..11

6.1 INI FILES / LOG FILES: ..11
6.1.1 PMON.INI ..11
6.1.2 EVENTS.INI ...12
6.1.3 Log File ..13
6.1.4 Trace File ...13

7. THE PMON APIS:..15

8. CONSIDERATIONS...17

9. THE EVENTS ...18

Page - 3 , 10/29/96

1. Objective:
PMON is a performance monitoring tool for Intel processors that retrieves information about a sequence
of code that is running under Windows* 95. This information may then be used for various purposes,
including performance tuning, performance validation, code coverage, and system tuning.

2. System Requirements:
• Windows* 95
• Intel Pentium processor, Pentium Pro processor, or Pentium processor with MMX technology.

3. PMON Installation:
Create a new directory (e.g. : C:\PMON) and unzip the PMON files into it. The executables are:

PM32_APP.EXE
PM32_DLL.DLL
PMON.VXD

The zipped file may also include an additional file :
EVENTS.INI

Note: If this file is not included, it will be created by the Pmon Utility.

4. Main operation modes:
Figure 1 illustrates the basic components of PMON. These are described in detail below.

PMON.VXD

PM32_APP.EXE

PM32_DLL.DLL

Command line
parameters / Batch

MS TEST

APPLICATION
SOURCE CODE

APPs under test

GUI

CPU -
Performance

Counters

PMON APIPMON API

PMON API

Figure 1

Page - 4 , 10/29/96

4.1 User interface

 In this mode, referred to hereafter as “Pmon Utility”, you operate the utility interactively while
running the application you want to test. Refer to Figure 2 for the features described below.

Figure 2

 First, select the events you want to measure through the two drop-down list boxes, and then start the

counters by pushing the “Start” button. The “Start” button will now display “Stop.” You will see the
counters updated every second. When you hit the “Stop” button, the summary of this measurement
will be displayed in the notification window. You can then copy these messages to the Windows*
clipboard or to a file.

 There are several options for starting/stopping the counters, and for logging the results into a file.

For details, see the explanations later in this guide. Also, the source code of this utility is supplied
with this package and may be used for reference or modified as needed.

4.2 Command line interface
 In this mode you activate the PMON utility along with some command line parameters. The

command line parameters allow you to activate the utility, select the events, start and stop the
counters, and log the results to a file. Command line implementation can be done by running it from
a Windows 95 DOS* box, by creating and editing the properties of the utility’s desktop icon or by
using a test tool utility such as Microsoft* Visual Test.

 Note: Each time you call this utility it loads again and executes.

Counters
Displays

Drop-Down
List Boxes

Notification
Window

Start Button

Page - 5 , 10/29/96

4.3 Programming interface
 In this mode, referred to hereafter as “Pmon API”, you interface with the DLL APIs from your code

or test tool utility. Loading, initializing the DLL, starting/stopping and retrieving the information is
done by the user from the application code. This is most accurate and non-intrusive mode, however it
requires some programming and you must have the source code of the application under test. This
mode can also be used with a test tool utility.

5. PMON Features
 Table 1 lists the features of PMON, which are described in detail below.

Feature User / Command
line interface

Programming/AP
I interface

Event selection Yes Yes
Start/Stop counting Yes Yes
Delayed start Yes Yes (User

implements)
Accumulate start Yes Yes (User

implements)
Stop counting and log Yes Yes
Install new events Yes (events.ini) Yes
Read counters from ring3 Yes Yes
Send event directly to
counters control registers

No Yes

Table 1

5.1 Current Files and version numbers:

 PM32_APP.exe The application - V2.2
 PM32_DLL.dll The DLL - V2.2
 PMON.vxd The VxD - V2.2

 Warning: All version numbers must be as listed above or Pmon will not work correctly. You can

check the DLL and VxD version numbers by looking at the first two lines in the Notification window.
 The utility checks the version numbers and displays a warning in the notification window if they do

not match.

5.2 The VxD
The VxD is dynamically loaded the first time you activate the DLL and unloaded when you exit.
Through the API or via the command line parameter you have the option to specify to unload the
VxD after exit.

When you use the PMON utility the VxD stays loaded by default. This enables the VxD to keep
previous activation records and report them back later to the DLL. This way you can activate the
tool from one application and stop it from another application and get the original activation
event and data.

Page - 6 , 10/29/96

The VxD is non intrusive. It is small, 7KB and is not active if you don’t call it. No interrupt
chaining is used.

5.3 The DLL
The DLL implements a set of APIs and communicates with the VxD. It should be loaded by the
application (using the PMON utility, or by loading it within the application code), and it is
unloaded automatically when the last application that uses it exits.

5.4 The Utility Main features

5.4.1 Event Selection

You can select an event using the index drop-down list box or using the event drop-down list box.
Choosing the first letter of the string will move the selection to the first event that starts with that letter.
This will speed up the event selection.

When you exit, the last settings are saved in the pmon.ini file in the same directory as the Pmon Utility.
These events are selected as the defaults when the Pmon Utility starts again, if the counter are not
running. If counters are running at launch time, the Pmon Utility will display the current counter names
and values and these will be written to the notification window.

The variables used in event selection are (refer to Figure 3):

• • Event: The name of the event being monitored.
• • Index: The index of the event as used by the Pmon Utility.
• • Umask: This drop-down list box exists only if the processor is Pentium Pro. The value here

combines with the event value to select the actual event to count.
• • Ring: The privilege level of the events to be watched.

Page - 7 , 10/29/96

Figure 3

The files associated with event selection are:
• • PMON.INI: Stores the last selected events and initializes the next instance of the Pmon Utility to

these events.
• • EVENTS.INI: Modify this to add events not currently programmed into the Pmon Utility.

5.4.2 Start/Stop
Refer to Figure 3 for the following:

• Simple Start/Stop: Use this for immediate starting and stopping of the counters.

• • Start [Delay]: For a delayed start of the counters, first click on “Configuration” from the menu bar

and then set the following parameters in the Configuration dialog box (see Figure 4):
1. Delay after Start: Select the number of seconds to wait before starting the counters.
2. Auto Stop After: You can select when you want to stop counting by entering the number of

seconds here, or you can click on the simple Stop button to stop the counters immediately.

• Start [Accumulate]: A Windows timer is set to the requested interval and on each tick, it logs the
counters values to a table in memory. The accuracy of this timer is at the mercy of the Windows OS
and the running applications at that time. This might be okay as we are logging the cycles elapsed
and most of the time we are interested in the difference between consecutive entries in the table. The
results are written a file named trace.txt in the Pmon directory.

Simple
Start/Stop

Delayed Start

Ring
Umask

Index

Accumulate
Start

Page - 8 , 10/29/96

 To use the Accumulate Start, first click on “Configuration” from the menu bar and then set the

following parameters in the Configuration dialog box (see Figure 4):
1. Number of Samples: Select the number of samples to take.
2. Sampling Interval: Select the length of the interval between each sample (in milliseconds).
3. Message window (optional): You can enter a descriptive line here to be written to trace.txt.

• • Stop message at the notification window: Refer to Figure 3. When counters are stopped the Pmon
utility displays a summary of the last run in the notification window. The information provided is:

• • The actual programmed hexadecimal values of the performance registers
• • The event string and the event index that were chosen for counter 0 and counter 1
• • The ring selection
• • The counter values and the elapsed cycles from start to stop

Figure 4

5.4.3 Additional Settings
These settings are accessed by selecting the “Setting” option on the menu bar (see Figure 5).

• Auto Stop: Check this option to have the counters always auto stop after the time specified in the
Configuration dialog box (see Figure 4).

Page - 9 , 10/29/96

Figure 5

• • Always save results to file: Check this option to always have the counter data saved to a log file.
The file will be named pmon32.log and it will be saved in the same directory as the Pmon Utility. If
the file already exists, the new data will be appended to the end of the file.

• Stay on top: Check here to keep the Pmon Utility always on top.

• Save Selection to Clipboard: Highlight an area in the Notification window and then click here to

have the area copied to the Windows clipboard.

• • Save Selection to FILE: Highlight an area in the Notification window and then click here to have the

area copied to a file. The file name will be named trace.txt and it will be saved in the same directory
as the Pmon Utility. If the file already exists, the new data will be appended to the end of the file.

5.5 Command Line Operation

5.5.1 Command Line Parameters
Table 2 lists the parameters that can be used with Pmon in the command line mode of operation.

Page - 10 , 10/29/96

Table 2: The Utility Command Line options

Command Description Example
/start Start the counters now /start
/T0=n
/T1=m

Specify the index for the event you want to activate. See
Appendix A for the events and their indices.

/T0=5
/T1=20

/T0CPL=x
/T1CPL=y

Set the ring level at which you want to count the events.

30 - level 012 and 3
 3 - only level 3
 0 - only level 0

/T0CPL=30 - counter 0
counts all relevant events if
code runs in ring 0,1,2,3

/T1CPL=3 - counter 1
counts all relevant events if
code runs in ring 3

/batch Activate the utility without showing the GUI/interactive
mode and exits at the end. The VxD will stay loaded
after exit.

/BATCH

/MSG=zzzyyyxxx Write this string to the log file as a reference. /MSG=Test20_Just_Before_
Lunch

/STOP Stop the counter, read results and report /stop
/FILE=xyz.log When stopped, will log the results to this file (appended

to the end) with regular date and time stamp. Note, no
spaces around the equal sign

/file=July23.log

/ACC_START Start counting and sample the counter every period of
time (/INTERVAL). Put readings into a buffer. At the
end write the whole table into a file-TRACE.TXT

/ACC_START
/SAMPLS=5000
INTERVAL=1000

/SAMPLES= Number of samples see above example
/INTERVAL= Sample rate [in ms] see above example
/DELAY_START Start counting after the delay. /DELAY_START

/DELAY=5
/DELAY= Delay [sec] see above example

Note: The command line is not case sensitive.
Table 3 summarizes the parameters that are available with each mode of operation.

Table 3: Main Command line options Summary

Purpose /BATCH /ACC_START
/INTERVAL=
/SAMPLES=

/START /STOP /DELAY_START
/DELAY=

/FILE=
/MSG=

Start & Exit X X
Stop & Exit X X X
Start with Delay & Exit X X
Accumulate &
Exit

X X

Page - 11 , 10/29/96

5.5.2 Command Line Examples
The following are examples of command lines.

1. pmon /t0=1 /T1=12 /t0cPl=30 /T1CPL=0 /StaRt /batch
Timer 0 is selected with event #1 with level 0,1,2,3
Timer1 is selected with event #12 with level 0,1,2,
Start the timers now.
Don't show the pmon GUI, just exit at the end.

2. pmon32 /stop /file=log.log /msg= Test20_Just_Before_Lunch /batch
These are the results in the log.log file:

--------- Log xxx---------
Fri Sep 20 13:04:00 1996
CPU ID: Family= 5, Model= 2, Stepping= 11, FeatureFlags= 1BF
User Message: Test20_Just_Before_Lunch
Counter 0: 1294383
Counter 1: 11030874
Elapsed cycles (TSC): 11300
Cnt0 E: 02570243 Ring: 0 Mask0=00
Cnt1 E: 00000000 Ring: 0 Mask1=00
Event 0[4]: Data Read Miss
Event 1[23]:Instructions Executed in the v-pipe e.g. parallelism
--------- Log End------

6. PMON Data Files

6.1 INI files / Log files:

6.1.1 PMON.INI
The pmon.ini file contains start up configuration lines, which may be edited as needed. An example is
shown in Figure 6. If you are using the Pmon Utility GUI, pmon.ini will be updated automatically each
time you close the application.

PMON.INI
[Initialization Values]
Read PMC From Level 3=ON

Event 0 Last Selection=27
Event 1 Last Selection=2

Event 0 Last Ring Selection=0
Event 1 Last Ring Selection=0

Event 0 Last Mask Selection=0x00
Event 1 Last Mask Selection=0x00

Interval [in ms]=1000
Delay [in ms]=4
Buffer Size=5
Auto Stop Time [in sec]=3

Figure 6

Page - 12 , 10/29/96

Parameter Explanation:
Read PMC From Level 3
The options are ON or OFF. Default is ON. This instruction is only available on Pentium
Processor with MMX technology and on Pentium Pro family. It allows reading the counters
directly from ring 3.

All the other parameters
Used by the utility to save last usage before exit and restore those entries when launched again.
Note that if the counters are running on the next launch, these parameters are not used and the
current counter setting are used.

6.1.2 EVENTS.INI
The events.ini file contains information about additional events which are not hard-coded into the Pmon
Utility. An example is shown in Figure 7 below. A description of how to add events to Pmon through the
events.ini file follows.

EVENTS.INI
 [Pentium Additional Events - Counter 0]
Number Of New Events=0

[Pentium Additional Events - Counter 1]
Number Of New Events=0

[Pentium Pro Additional Events]
Number Of New Events=27
....
E_str_11=Transitions FP to MMX
E_enc_11=0xCC
E_msk_11=0x01
E_idx_11=92

E_str_12=My favorite Event
E_enc_12=0x17
E_msk_12=0x01
E_idx_12=0
...

Figure 7

Parameter Explanation:
Note: The parameters are case sensitive!!!

There are 3 basic sections:
[Pentium Additional Events - Counter 0]
[Pentium Additional Events - Counter 1]
[Pentium Pro Additional Events]
The utility detects under which processor it runs and looks for the appropriate section.

Number Of New Events=27
This parameter specifies how many new events exist in this section. In this example 27
new events should follow this section. Each event should have four lines with a
consecutive index (starting from 1) embedded into the parameter name. For example
E_str_12, refers to the 12th entry.

Page - 13 , 10/29/96

E_str_n=
a string that represents this event. Will be used in the drop-down list box and
for the data files.

E_enc_n=
a hex number (example: 0x36) which is the event’s encoding.

E_msk_n=
a hex number (example: 0xFF) which is the event’s Umask (relevant for
Pentium Pro Processor Family).

E_idx_n=
A decimal number (starting from 0) for the index in the Application/DLL event
data base. It inserts the new event into this entry of the data base and overrides
the previous event.

The first unoccupied entries in the data base for this version of the utility are:
Pentium processor: 60
Pentium Pro Processor: 82
The table contains 120 entries.

6.1.3 Log File
Figure 8 shows an example of the log file that is generated when you ask for this option, either by setting
“Always Save Results to a File” from the “Setting” menu, or by command line parameter.

Log File
--------- Log xxx---------
Fri Sep 20 13:04:00 1996
CPU ID: Family= 5, Model= 2, Stepping= 11, FeatureFlags= 1BF
User Message: Test2A
Counter 0: 1294383
Counter 1: 11030874
Elapsed cycles (TSC): 11300
Cnt0 E: 02570243 Ring: 0 Mask0=00
Cnt1 E: 00000000 Ring: 0 Mask1=00
Event 0[4]: Data Read Miss
Event 1[23]: Instructions Executed in the v-pipe e.g. parallelism
--------- Log End------

Figure 8

The file is created if it does not exist and then appended with this information. It includes the time the
data was written, along with information about the CPU. Also included are the user message (if given)
and the data from the counters.

6.1.4 Trace File
Figure 9 shows an example of the trace file that is generated when you select the accumulate mode, either
by clicking on the “Start[Acc.]” button, or by command line parameter.

Page - 14 , 10/29/96

Trace.txt
--->> Trace From: Fri Sep 20 14:08:21 1996

CPU ID: Family Model Stepping FeatureFlags
 5 2 11 1BF
User Message: My second attempt
Interval used: 500 [ms]
Cnt0 Ring: 0 Mask0=00
Cnt1 Ring: 0 Mask1=00
Event 0[32]: Hardware Interrupts
Event 1[27]: FLOPs

Sample# Cnt0 Cnt1 Elapsed Cycles
00001 34 25 46157524
00002 14 44 19760606
00003 35 24 46143440
00004 14 43 19775050
00005 33 24 46153248
00006 16 43 19757254
00007 37 24 46153758
00008 14 43 19758794
00009 33 24 46143502
00010 16 43 19765716
00011 32 22 41175440
00012 15 45 19746536
00013 34 23 46160212
00014 17 44 19761174
00015 35 23 46176638
00016 15 44 19731874
00017 36 23 46156850
00018 15 44 19752132
00019 40 23 46158564

Total: 485 628 634388312

--------- End ------

Figure 9

Each entry here represents the incremental counts that occurred between two consecutive samplings. For
example, sample # 2 reads “14 counter 0”. This means that Counter 0 was incremented by 14 after
sample #1 was taken.
Note: The above format is a tab separated in the file, which can be easily imported into a spread sheet
(CSV format).

Page - 15 , 10/29/96

7. The PMON APIs:
The APIs defined in PM32_DLL.DLL are listed in Table 4 below.

Table 4: The PMON APIs

Category API Description
Pmon32Init Load/connect to the VxD.

Init Pmon32InitEx Load/connect to the VxD + Option to
unload VxD on exit

Pmon32Close Close connection to DLL/VxD.
Depending on how the DLL was
initialized, this may or may not unload
the VxD.

Pmon32InstallEvent Install a new event into a requested entry
in the DLL event data base. This
overrides any existing entry.
The table below shows the occupied
events in the DLL data base. Pentium
Pro Processor Events occupy entries
from 0-81. Pentium Processor Events
occupy entries from 0 - 61. It is
advisable to add your events to the
unoccupied entries. Both tables have 120
entries.

Pmon32DisableRDPMCRing3
Pmon32EnableRDPMCRing3

Allows/disables reading the counters
from ring3. Only available on Pentium
Processors with MMX Technology or
Pentium Pro Processors.

Operation Pmon32Start Program the events, start counting
Pmon32StartDirect Send the value directly to the counter

control registers. This also attaches
strings to these events so that when these
counters are stopped and the EventToStr
routines are called, these strings will be
returned.

Pmon32StartEx Program the events, start counting.
Additional support for Umask field.

Pmon32StopAndReadCounters Stop counters, read results.
Status Pmon32ReadCounters Read counters on the fly.

Pmon32ReadTSC Read the time stamp counter.
Pmon32Status Running/stopped, which events were or

are being counted.
Pmon32AreCountersRunning TRUE/FALSE for counters running.
Pmon32Event0ToStr
Pmon32Event1ToStr

Returns a pointer to string for a given
event index.

The formal definitions for these APIs are (as included in the file DLL_IF.H):

DWORD (FAR *Pmon32Init) (struct Pmon32Version *ver);
DWORD (FAR *Pmon32Close) (void);
DWORD (FAR *Pmon32Status) (struct Pmon32Reply *Reply);
BOOL (FAR *Pmon32AreCountersRunning) ();

Page - 16 , 10/29/96

DWORD (FAR *Pmon32Start) (BYTE Event0, BYTE Event0Ring,
 BYTE Event1, BYTE Event1Ring);

DWORD (FAR *Pmon32StopAndReadCounters) (struct Pmon32Reply *Reply);
DWORD (FAR *Pmon32ReadCounters) (struct Pmon32Reply *Reply);
DWORD (FAR *Pmon32ReadTSC) (struct Pmon32Reply *Reply);
DWORD (FAR *Pmon32EnableRDPMCRing3) (void);
DWORD (FAR *Pmon32DisableRDPMCRing3) (void);
char *(FAR *Pmon32Event0ToStr) (BYTE index);
char *(FAR *Pmon32Event1ToStr) (BYTE index);

DWORD (FAR *Pmon32StartEx) (struct Pmon32StartCmd *Cmd);

DWORD (FAR *Pmon32StartDirect) (DWORD E0, DWORD E1, char *str0,
char *str1);

DWORD (FAR *Pmon32InstallEvent) (BYTE Cnt, BYTE Index,
BYTE Encoding, BYTE Mask, char *str);

DWORD (FAR *Pmon32InitEx) (struct Pmon32StartCmd *Cmd,
struct Pmon32Version *ver);

The application communicates with the DLL using the following structure:

struct Pmon32StartCmd{
BYTE Event0; // Index as defined by the table below (Section 9)
BYTE Event1; // Index as defined by the table below (Section 9)
BYTE Event0Ring; // 0 - ring 0, 3 - ring 3, 30 - ring 3 and 0
BYTE Event1Ring;

BYTE Event0Mask; // Only for Pentium Pro processors. As defined by
the // architecture

BYTE Event1Mask;
BYTE Flg1; // res
BYTE Flg2; // res

BOOL unload_vxd_on_exit; // TRUE - VxD will be unloaded on exit
BOOL Flg3;
BOOL Flg4;
BOOL Flg5;

DWORD Res1;
DWORD Res2;
DWORD Res3;

};

struct Pmon32Reply{
DWORD T0_l; // Counter/event 0 LSB
DWORD T0_h; // Counter/event 0 LSB
DWORD T1_l; // Counter/event 1 MSB
DWORD T1_h; // Counter/event 1 MSB
DWORD TSC_l; // current Time Stamp LSB
DWORD TSC_h; // current Time Stamp MSB
DWORD ElapsedTime_l;
DWORD ElapsedTime_h;
DWORD TSCLast_l;
DWORD TSCLast_h;
BYTE Event0; // Index as known by the DLL
BYTE Event1;
BYTE Event0Ring;
BYTE Event1Ring;
BYTE Event0Mask;
BYTE Event1Mask;
BYTE pad1 ; // structure alignment
BYTE pad2 ;
DWORD status;

Page - 17 , 10/29/96

DWORD res1;
DWORD res2;
DWORD res3;
DWORD res4;
DWORD res5;
DWORD res6;

};

struct Pmon32Version{
char VxDVersion[32]; // A string
char DLLVersion[32]; // A string
int VxDMajor; // Represents the VxD major version number
int VxDMinor; // Represents the VxD minor version number
int DLLMajor; // Represents the DLL major version number
int DLLMinor; // Represents the DLL minor version number
char res2[16];

};

8. Considerations
1. This version runs only on Windows* 95.

2. One can use batch mode to set the required events and set the option of reading the counters from level
3 (This is the default if this line is omitted). Then, the application can read the results (the counters)
directly from its code (ring 3).

3. Two or more instances of the PMON Utility are allowed. Notice that the second instance will refresh its
event selection only once at start, but won’t be able to report on the right selection dynamically as the
changes take place by other instances. On the other hand, it will show the changes in the counter totals.
Also, if the second instance is the one that initiates the stop, it will report the right event.

4. The Pmon utility does not use all the options provided in the performance monitoring of the
processor. You can observe the exact programming value that the tool is using by looking at the stop
message in the notification window. However the APIs allow the programmer to directly interface with
the register and utilize more features.

5. Notice that the Pentium Pro events are programmed with E bit set to 0. This means that all events are
a duration type and not occurrence one.

6. In the Pentium Pro case some events are only applicable to a specific counter. The current version of
the Pmon utility does not prevent you from using it with the wrong counter. However the description of
the event notifies you with the correct counter to use. See the Pentium Pro event table, events 55-60.

Page - 18 , 10/29/96

9. The Events
The following are the events and their indices. These are the default programming in the application data
base and in the DLL data base. It also correlates to the result indices in the log file.
Each table consumes 120 entries and the unoccupied ones are different from Pentium to Pentium Pro
tables.
Note that indices below are the indices defined by the tool and they do NOT necessarily match the ones
described in the processor programmer reference manual .

Pentium Processor Events for Counter 0

Index Event Encoding
0 Data Read 0x00
1 Data Write 0x01
2 Data Read or Data Write 0x28
3 Data TLB Miss 0x02
4 Data Read Miss 0x03
5 Data Write Miss 0x04
6 Data Read or Data Write Miss 0x29
7 Write (hit) to M or E state lines 0x05
8 Data Cache Lines Written Back 0x06
9 External Snoops 0x07
10 External Data Cache Snoop Hits 0x08
11 Memory Accesses in Both Pipes 0x09
12 Bank Conflicts 0x0a
13 Misaligned Data Memory or I/O References 0x0b
14 Code Read 0x0c
15 Code TLB Miss 0x0d
16 Code Cache Miss 0x0e
17 Any Segment Register Loaded 0x0f
18 Branches 0x12
19 BTB Hits 0x13
20 Taken Branch or BTB Hit 0x14
21 Pipeline Flushes 0x15
22 Instructions Executed 0x16
23 Instructions Executed in the v-pipe e.g. parallelism 0x17
24 Locked Bus Cycle 0x1c
25 I/O Read or Write Cycle 0x1d
26 Non-cacheable memory reads 0x1e
27 FLOPs 0x22
28 Breakpoint match on DR0 Register 0x23
29 Breakpoint match on DR1 Register 0x24
30 Breakpoint match on DR2 Register 0x25
31 Breakpoint match on DR3 Register 0x26
32 Hardware Interrupts 0x27
33 Clocks while a bus cycle is in progress (bus util.) 0x18
34 Number of clocks stalled due to full write buffers 0x19
35 Pipeline stalled waiting for data memory read 0x1a
36 Stall on write to an E or M state line 0x1b
37 Pipeline stalled due to addr generation interlock 0x1f
38 Bus ownership latency 0x2a
39 MMX instructions executed in U-pipe 0x2b
40 Number of L1 M-state line sharing 0x2c
41 EMMS instructions executed 0x2d
42 Bus utilization due to processor activity 0x2e
43 Saturated MMX instructions executed 0x2f
44 Cycles not in HLT state 0x30

Page - 19 , 10/29/96

Pentium Processor Events for Counter 0 (continued)

Index Event Encoding
45 MMX data memory reads 0x31
46 Floating point stalls 0x32
47 D1 starving but instruction FIFO empty 0x33
48 MMX data memory writes 0x34
49 Pipeline flushes due to wrong branch prediction 0x35
50 MMX misaligned data memory reference 0x36
51 Returns miss predictions 0x37
52 MMX Multiply interlock 0x38
53 Returns executed 0x39
54 BTB bogus entry detected 0x3a
55 MMX writes backed - pipe stalled 0x3b
56 Reserved 0x3c
57 Reserved 0x3d
58 Reserved 0x3e
59 NULL event 0x3f
60 Reserved 0xFF
61 Reserved 0xFF
....
118 Reserved 0xFF
119 Reserved 0xFF

Pentium Processor Events for Counter 1

Index Event Encoding
0 Data Read 0x00
1 Data Write 0x01
2 Data Read or Data Write 0x28
3 Data TLB Miss 0x02
4 Data Read Miss 0x03
5 Data Write Miss 0x04
6 Data Read or Data Write Miss 0x29
7 Write (hit) to M or E state lines 0x05
8 Data Cache Lines Written Back 0x06
9 External Snoops 0x07
10 External Data Cache Snoop Hits 0x08
11 Memory Accesses in Both Pipes 0x09
12 Bank Conflicts 0x0a
13 Misaligned Data Memory or I/O References 0x0b
14 Code Read 0x0c
15 Code TLB Miss 0x0d
16 Code Cache Miss 0x0e
17 Any Segment Register Loaded 0x0f
18 Branches 0x12
19 BTB Hits 0x13
20 Taken Branch or BTB Hit 0x14
21 Pipeline Flushes 0x15
22 Instructions Executed 0x16
23 Instructions Executed in the v-pipe e.g. parallelism 0x17
24 Locked Bus Cycle 0x1c
25 I/O Read or Write Cycle 0x1d
26 Non-cacheable memory reads 0x1e
27 FLOPs 0x22
28 Breakpoint match on DR0 Register 0x23

Page - 20 , 10/29/96

Pentium Processor Events for Counter 1 (continued)

Index Event Encoding
29 Breakpoint match on DR1 Register 0x24
30 Breakpoint match on DR2 Register 0x25
31 Breakpoint match on DR3 Register 0x26
32 Hardware Interrupts 0x27
33 Clocks while a bus cycle is in progress (bus util.) 0x18
34 Number of clocks stalled due to full write buffers 0x19
35 Pipeline stalled waiting for data memory read 0x1a
36 Stall on write to an E or M state line 0x1b
37 Pipeline stalled due to addr generation interlock 0x1f
38 Bus ownership transfers 0x2a
39 MMX instructions executed in V-pipe 0x2b
40 Number of L1-line sharing 0x2c
41 MMX ---> FP transitions 0x2d
42 Writes to non-cacheable memory 0x2e
43 Saturated MMX operations executed 0x2f
44 Ex stage stalled due to a D-TLB miss 0x30
45 MMX data read misses 0x31
46 Taken branches 0x32
47 D1 starving but only 1 inst in inst FIFO 0x33
48 MMX data write misses 0x34
49 Pipeline flushes-wrong branch prediction in WB-Stage 0x35
50 MMX wait memory read - pipe stalled 0x36
51 Returns predicted (correctly & uncorrectly) 0x37
52 MMX store stall due to previous operation 0x38
53 RSB overflows 0x39
54 BTB miss-prediction or a not-taken branch 0x3a
55 Stall on MMX write to E or M line 0x3b
56 Reserved 0x3c
57 Reserved 0x3d
...
118 Reserved 0xFF
119 Reserved 0xFF

Pentium Pro Processor Events

Index Encoding Umask Event
0 0x43 0x00 DCU - Data Mem Refs
1 0x45 0x00 DCU - Lines In
2 0x46 0x00 DCU - M Lines In
3 0x47 0x00 DCU - M Lines Out
4 0x48 0x00 DCU - Miss Outstanding
5 0x80 0x00 IFU - iFetch
6 0x81 0x00 IFU - iFetch Miss
7 0x85 0x00 IFU - ITLB Miss
8 0x86 0x00 IFU - Mem Stall
9 0x87 0x00 IFU - Inst Lrngth Decoder Stall

L2 Cache
10 0x28 0x0F L2 Instructions Fetches [MESI]
11 0x29 0x0F L2 Data Loads [MESI]
12 0x2A 0x0F L2 Data Stores [MESI]
13 0x24 0x00 Lines Allocated in L2
14 0x26 0x00 Lines Removed from L2
15 0x25 0x00 Modified Lines ALLOCATED in L2
16 0x27 0x00 Modified Lines REMOVED from L2

Page - 21 , 10/29/96

Pentium Pro Processor Events (continued)

Index Encoding Umask Event
17 0x2E 0x0F L2 Requests [MESI]
18 0x21 0x00 L2 Address Strobes
19 0x22 0x00 Cycles Data Bus was BUSY
20 0x23 0x00 Cycles Data Bus was BUSY in READ

External Bus Logic (EBL)2
21 0x62 0x00 DRDY is asserted [Self/Processor]
22 0x62 0x20 DRDY is asserted [Any/any agent]
23 0x63 0x00 LOCK is asserted [Self]
24 0x63 0x20 LOCK is asserted [Any]
25 0x60 0x00 BUS requests outstanding
26 0x65 0x00 Burst Read transactions [Self]
27 0x65 0x20 Burst Read transactions [Any]
28 0x66 0x00 Read for Ownership Transactions [Self]
29 0x66 0x20 Read for Ownership Transactions [Any]
30 0x67 0x00 Write Back Transactions [Self]
31 0x67 0x20 Write Back Transactions [Any]
32 0x68 0x00 Instruction FETCH Transactions [Self]
33 0x68 0x20 Instruction FETCH Transactions [Any]
34 0x69 0x00 BUS Invalidate Transactions [Self]
35 0x69 0x20 BUS Invalidate Transactions [Any]
36 0x6A 0x00 BUS Partial Writes [Self]
37 0x6A 0x20 BUS Partial Writes [Any]
38 0x6B 0x00 BUS Partial Transactions [Self]
39 0x6B 0x20 BUS Partial Transactions [Any]
40 0x6C 0x00 BUS Trans IO [Self]
41 0x6C 0x20 BUS Trans IO [Any]
42 0x6D 0x00 BUS DEFFERED Transactions [Self]
43 0x6D 0x20 BUS DEFFERED Transactions [Any]
44 0x6E 0x00 BUS BURST Transactions [Self]
45 0x6E 0x20 BUS BURST Transactions [Any]
46 0x70 0x00 BUS- ALL transactions [Self]
47 0x70 0x20 BUS- ALL transactions [Any]
48 0x6F 0x00 BUS- Memory Transactions [Self]
49 0x6F 0x20 BUS- Memory Transactions [Any]
50 0x64 0x00 BUS- cycles processor RECEIVING DATA
51 0x61 0x00 BUS- Cycles processor driving BNR pin
52 0x7A 0x00 BUS- Cycles processor driving HIT pin
53 0x7B 0x00 BUS- Cycles processor driving HITM pin
54 0x7E 0x00 BUS is SNOOP Stalled

Floating Point Unit
55 0xC1 0x00 FP Ops RETIRED [Counter 0 Only]
56 0x10 0x00 FP Ops EXECUTED [Counter 0 Only]
57 0x11 0x00 FP Assist [Counter 1 Only]
58 0x12 0x00 FP MUL [Counter 1 Only]
59 0x13 0x00 FP DIV [Counter 1 Only]
60 0x14 0x00 FP Cycles Divider is Busy [Counter 0 Only]

Memory Ordering
61 0x03 0x00 Mem Ord - LD Blocks
62 0x04 0x00 Mem Ord - SB Drains
63 0x05 0x00 Mem Ord - Misalign Mem Refs

Instruction Decoding and Retirement
64 0xC0 0x00 INST - Instructions Retired
65 0xC2 0x00 INST - uOps Retired
66 0xD0 0x00 INST - Instructions decoded

Interrupts
67 0xC8 0x00 INT - Hardware INTERRUPTS received
68 0xC6 0x00 INT - Cycles INterrupts are DISABLED

Page - 22 , 10/29/96

Pentium Pro Processor Events (continued)

Index Encoding Umask Event
69 0xC7 0x00 INT - Cycles Ints are Pending But disabled

Branches
70 0xC4 0x00 Branch Insts Retired
71 0xC5 0x00 BR Miss PRED Retired
72 0xC9 0x00 BR Taken Retired
73 0xCA 0x00 BR Miss PRED Taken Retired
74 0xE0 0x00 BR Insts Decoded
75 0xE2 0x00 BRs That miss the BTB
76 0xE4 0x00 BR Bogus
77 0xE6 0x00 BACLEAR is asserted

Stalls
78 0xA2 0x00 STALLS - Resource Stalls
79 0xD2 0x00 STALLS - Partial RAT Stalls

Segment Register Loads
80 0x06 0x00 Segment Reg Loads

Clocks
81 0x79 0x00 CPU CLK UnHalted
82 0xFF 0xFF Reserved
83 0xFF 0xFF Reserved
84 0xFF 0xFF Reserved
85 0xFF 0xFF Reserved
86 0xFF 0xFF Reserved
87 0xFF 0xFF Reserved
88 0xFF 0xFF Reserved
89 0xFF 0xFF Reserved
90 0xFF 0xFF Reserved
91 0xFF 0xFF Reserved
92 0xFF 0xFF Reserved
...
118 0xFF 0xFF Reserved
119 0xFF 0xFF Reserved

