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Overview

The Intel Recognition Primitives Library provides a set of recognition
primitives and feature extraction functions targeted for use by speech and
optical character recognition (OCR) application developers.

Manual Organization

This manual describes the functions in the Recognition Primitives Library.
Each function is introduced by its name and a short description of its
purpose. This is followed by a function prototype and definitions of its
arguments. Finally there is a discussion of the algorithm and its
implementation.

The chapters included in this manual are:

Chapter 1: Overview

Chapter 2: Error Handling

Chapter 3: Vector Operations
Chapter 4: Signal Processing
Chapter 5: Recognition Basics
Chapter 6: Image Processing
Chapter 7: Dynamic Programming
Chapter 8: Miscellaneous Functions

Related Publications

This manual is designed as a reference for the Intel Recognition Primitives
Library. The routines described in this manual are tailored for speech
signal analysis rather than general signal analysis. Thus, many of the
potential signal processing variations involving complex input types,
conjugate-symmetric input, in-place computation, not-in-place

11
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computation, and so on, are not included here. If you need a
comprehensive signal processing reference, sdatileSignal Processing
Library Reference Manuabrder number 630508.

Many signal processing programs require other types of scalar and vector
processing, array processing, and linear algebra functions which are not
included in the Intel Recognition Primitives. The Intel Math Kernal

Library provides such functions with a FORTRAN interface. For more
information on this library, see thietel Math Kernal Library Reference
Manual, order number 630813.

This manual also contains numerous references to additional textbooks on
filters and signal processing.

Notational Conventions

This section describes the notational conventions used by the Intel
Recognition Primitives Library and the notational conventions for data
types and function names used in this manual.

Data Types

The most common data types used in the library are single precision
floating point vectors (32 bits on Win32*) and short integer (16 bits on
Win32) vectors - both for input and output. In some cases (for example,
distance measures) long integer output is used. While short integers result
in compact storage representation for data structures, they need to be
augmented by a scaling strategy because of their limited bit capacity
(namely, the range of -32768 to +32767 on Win32).

Other data types used in the library are 8-bit signed integer, 8-bit unsigned
integer, 4-bit nibble and 1-bit.
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Bit position is indicated with reference to the least significant bit in the
smallest addressable unit (a byte). The figure below shows the order of
bytes and bits within a byte:

00000 - increasingaddress 00 OO0 -
byte0 bytel byte2 byte3

76543210 76543210 76543210 76543210

Nibble position is indicated as follows:

00000 - increasingaddress 00000 -
byteO bytel byte2 byte3

11110000 11110000 11110000 11110000

Data Type Conventions

Many of the functions in the Recognition Primitives Library are available
for a variety of integer vectors and for single-precision real and complex
vectors. The Recognition Primitives Library distinguishes input vector
types by the use of a character code. A character code embedded within
the prefix of the function name indicates what type of vector can be used
with a particular functionTable 1-1lists the names of the vector types

and their corresponding character codes.
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Table 1-1

Vector Types and Corresponding Character Codes

Vector Type Character Code
bit vector RLb

4-bit nibble vector RLn

unsigned byte vector RLy

signed byte vector RLt

16-bit integer vector RLw

16-bit integer complex vector RLv
single-precision real vector RLs
single-precision complex vector RLc

32-bit integer vector RLi

Additionally, the output of some of the DFT and FFT functions are
complex values formatted as a vector of typepix (for 16-bit integer
valued inputs) andcplix (for floating-point valued inputs). The C
definitions forwcplx andscplix are as follows:

typedef struct _WCplx {
short int real;
short int imag;

} WCplx;

typedef struct _SCplx {
float real;
float imag;

} SCplx;
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Function Name Conventions

The names of functions in the Recognition Primitives Library always
begin with therL prefix and have the following general format:

RL < character code ><  flags >< name>< mods> ()
where:

character  code One of the character codes described in
Table 1-1 aboves(n,y,t,w,s,c, 0ori). The
character code indicates which function to use
with which data type.

flags The flags field is optional. The only flag
currently defined i, which indicates a block (or
vector) variety of the function. A block variety
of a function is generally equivalent to multiple
invocations of the non-block (scalar) function.

name Indicates the core functionality, such/asi, Fit
or Cepstral

mods The mods field is optional and indicates a
modification to the core functionality of the
function group. Examples afods areNip (not-
in-place) andr (truncation).

Integer Scaling

Most of the integer functions in the Recognition Primitives Library
perform their internal computations using a higher precision than the
integer data types used for input and output. For the Pentium processor,
this higher precision is single- and double-precision floating point
representation.

These integer functions posses two arguments;aleOutput  and
scaleFactor , which dictate how the internal representation is converted
to integers before output. ThieScaleOutput  andscaleFactor

arguments are described in greater detail below.
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A typical integer function has the following format:

RIw???(..., int doScaleOutput, int *scaleFactor);

doScaleOutput

scaleFactor

1-6

Indicates the scaling options to be used in
returning the output. The following scaling
options are currently allowed:

RL_NO_SCALE

Does not scale the output at all. Tajstion
gives the fastest performance. Truncation or
wrap-around and other erroneous results will
occur when overflow or underflow occur. A
scaleFactor  Of O is returned.

RL_FIXED_SCALE
The output is always multiplied by*2= . The
scaleFactor is returned without any alteration.

RL_AUTO_SCALE

The output is automatically scaled up or down to
make the best use of the short integer output
representation. ThereforgaleFactor  is
chosen automatically, the output is multiplied by
2 andscaleFactor IS returned.

RL_SATURATE

When overflow or underflow occurs, the output
is clipped tosHRT_MAXthat is, +32767 - long
integers are clipped taONG_MAXor SHRT_MIN
(that is, -32768 - long integers are clipped to
LONG_MIN respectively, otherwise it is not
changed. AscaleFactor  of O is returned.

The scale factor (an exponent of 2) that is either
specified or chosen automatically depending on
the doScaleOutput  argument. If the option
RL_AUTO_SCALBvas chosen automatically, the
actual output can be obtained from the returned
scaleFactor  as

scaleFactor

actual_ouput = output * 2



Error Handling

This chapter describes the error handling facility supplied with the Intel
Recognition Primitives Library. The Recognition Primitives Library
functions report a variety of errors including bad argumeintis I(

pointers and out-of-range parameters) and out of memory conditions.
When a function detects an error, instead of returning a status code, the
function signals an error by callimg SetStatus() . This allows the error
handling mechanism to be handled separately from the normal flow of the
application code. The code is thus cleaner and more compact as shown in
this example.

maximum = RLybMax(src, n, &position);
[* do error checking */
if(RLGetStatus()<0)

The error handling system is hidden within the functampoMax() . Thus,
this statement is uncluttered by error handling code and results in a
statement which closely resembles a mathematical formula. The error is
detected by callin@LGetStatus().

The errors that a function may signal are implementation-dependent. Your
application should assume that every library function call may result in
some error condition. The Intel Recognition Primitives Library performs
extensive error checks (for examplelLL pointers, out-of-range

parameters, corrupted states) for every library function.

Error macros are provided to simplify the coding for error checking and
reporting. You can modify the way your application handles errors by
calling RLRedirectError() with a pointer to your own error handling
function. For more information, se@dding Your Own Error Handl&r

later in this chapter. For even more flexibility, you can replace the whole
error handling facility with your own code. The source code of the default
error handling facility is provided.

2-1
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There are two versions of Intel Recognition Primitives Library: the debug
version and the non-debug version. The debug version detects more errors
than the non-debug version (for example, it checks bad parameters). The
debug version can be used during application development and the
non-debug version for the released application. The non-debug version
detects much fewer errors (for example, failure of memory allocation) and
is therefore faster.

Error Functions

The following sections describe the error functions in the Intel
Recognition Primitives Library.

Error

Performs basic error
handling

RLStatus RLError(RLStatus status, const char * func,
const char * context, const char * file, int line)

status Code that indicates the type of erree¢Table 2-1,
“RLError() Status Codé&s

func Name of the function where the error occurred.

context Provides additional information about the context in
which the error occurred. If the valuewhtext is
NULL or empty, this string will not appear in the error

message.
file Name of the source file whith the function text.
line The line number where the error occurred.
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Discussion

TheRLError()  function should be called whenever any of the library’s
functions encounters an error. The actual error reporting will be handled
differently, depending on whether the program is running in Windows
mode or in console mode. Within each invocation mode, you can set the
error mode flag to alter the behavior of theerror()  function. See
“SetErrModé (for RLSetErrMode() ) for more information on the defined
error modes.

To simplify the coding for error checking and reporting, the error handling
system supplied by the Intel Recognition Primitives Library supports a set
of error macros. Seéfror Macro$ for a detailed description of the error
handling macros.

TheRLError()  function calls the default error reporting function. You
can change the default error reporting function by calling
RLRedirectError() . For more information, se&tdirectErrof.
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GetStatus, SetStatus

Gets and sets the error
codes which describe
the type of error being
reported

typedef int RLStatus;
RLStatus RLGetStatus(void);
void RLSetStatus(RLStatus status );

status Code that indicates the type of error (Seéle 2-1,
“RLError() Status Codé&s

Discussion

TheRLGetStatus()  andRLSetStatus()  functions get and set the error
status codes which describe the type of error being reportedSgses'
Codes for descriptions of each of the error status codes.
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GetErrMode, SetErrMode

Gets and sets the error
modes which describe
how an error is

processed.

#define RL_ErrModeLeaf O

#define RL_ErrModeParent 1

#define RL_ErrModeSilent 2

int RLGetErrMode(void);

void RLSetErrMode(int errMode );

errMode Indicates how errors will be processed. The possible
values forerrMode areRL_ErrModelLeaf ,
RL_ErrModeParent Or RL_ErrModeSilent

Discussion

NOTE. This section describes how the default error handler handles
errors for applications which run in console mode. If your application
has a custom error handler, errors will be processed differently than

described below.

TheRLSetErrMode()  function sets the error modes which describe how
errors are processed. The defined error modeslam®rModeLeaf
RL_ErrModeParent andRL_ErrModeSilent

If you specifyRL_ErrModeLeaf , errors are processed in the “leaves” of the
function call tree. Th@LError()  function (in console mode) prints an
error message describingitus , func , andcontext . It then terminates

the program.

If you specifyRL_ErrModeParent , errors are processed in the “parents” of
the function call tree. WheRLError()  is called as the result of detecting
an error, an error message will print but the program will not terminate.

2-5
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Each time a function calls another function, it must check to see if an error
has occurred. When an error occurs, the function shoulelicadior()
specifyingRL_StsBackTrace , and then return. The madrd_ERRCHK()

may be used to perform both the error check and back trace call. This
passes the error “up” the function call tree until eventually some parent
function (possiblynain() ) detects the error and terminates the program.

RL_ErrModeSilent is similar torRL_ErrModeParent , except that error
messages are not printed.

RL_ErrModeLeaf is the default, and is the simplest method of processing
errors.RL_ErrModeParent  requires more programming effort, but
provides more detailed information about where and why an error
occurred. All of the functions in the library support both options (that is,
they userRL_ERRCHK() after function calls). If an application uses the
RL_ErrModeParent  option, it is essential that it checks for errors after all
library functions that it calls.

The status code of the last detected error is stored into the internal static
variablestatus  which can be returned by callimg GetStatus()
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ErrorStr

Translates an error or
status code into a
textual description

const char* RLErrorStr(RLStatus status );

status Code that indicates the type of error (Seéle 2-1,
“RLError() Status Codé&s

Discussion

The functionRLErrorStr() returns a short string describiagitus

Use this function to produce error messages for users. The returned pointer
is a pointer to an internal static buffer that may be over-written on the next
call toRLErrorStr()

RedirectError

Assigns a new error
handler to call when an
error occurs.

RLErrCallBack RLRedirectError(RLErrCallBack func );

func Pointer to the function that will be called when an error
occurs.

Discussion

TheRLRedirectError() function assigns a new function to be called
when an error occurs in the Intel Recognition Primitives Librargunif

is NULL, RLRedirectError() installs the Intel Recognition Primitives
Library's default error handler.

2-7
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The return value oRLRedirectError() is a pointer to the previously
assigned error handling function.

For the definition of the function typedef ErrcallBack , see the include
file rlerror.h . See Adding Your Own Error Handl&ifor more
information on thexLRedirectError() function.

Error Macros

The error macros associated with thesrror()  function are described
below.

#define RL_ERROR( status , func , context )\
RLError(( status ), ( func),( context ), FILE_,\
__LINE_)

#define RL_ERRCHK( func , context )\
( (RLGetStatus() >= 0) ? RL_StsOk : \
RL_ERROR(RL_StsBackTrace,( func ),(  context )))

#define RL_ASSERT( expr, func , context )\
(( expr)?RL_StsOk:\
RL_ERROR(RL_StsInternal, ( func ), ( context )))

#define RL_RSTERR() (RLSetStatus(RL_StsOKk))

context Provides additional information about the context in
which the error occurred. If the value@fhiext is
NULL or empty, this string will not appear in the error

message.
expr An expression that checks for an error condition and
returnsFALSE if an error occurred.
func Name of the function where the error occurred.
status Code that indicates the type of error (Seéle 2-1,

“RLError() Status Code3
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Discussion

TheRL_ASSERT() macro checks for the error conditiexpor and sets the
error statuKkL_Stsinternal if the error occurred.

TheRL_ERRCHK() macro checks to see if an error has occurred by
checking the error status. If an error has occuredzRRCHK() creates

an error back trace message and returns a non-zero value. This macro
should normally be used after any call to a function that might have
signaled an error.

TheRL_ERROR() macro calls th&LError()  function with current file

name and line as last arguments. This macro is used by other error macros.
By changingrL_ERROR() you can modify the error reporting behavior
without changing a single line of source code.

TheRL_RSTERR() macro resets the error statuito StsOk , thus
clearing any error condition. This macro should be used by an application
when it decides to ignore an error condition.

Status Codes

The status codes used by the Intel Recognition Primitives Library are
described immable 2-1 Status codes are integers, not an enumerated type.
This allows an application to extend the set of status codes beyond those
used by the library itself. Negative codes indicate errors, while non-
negative codes indicate success.
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Table 2-1

RLError() Status Codes

Status Code Description

RL_StsOk 0

RL_StsBackTrace -1

RL_StsError -2

RL_StsiInternal -3

RL_StsNoMem -4

RL_StsBadArg -5

RL_StsBadFunc -6

RL_StsNoConv -7

RL_StsOverflow -20

RL_StsUnderflow 21

No error. The RLError() function will do
nothing if called with this status code.
Implements a backtrace of the function calls
that lead to an error. If RL_ERRCHK() detects
that a function call resulted in an error, it calls
RL_ERROR() with this status code to provide
further context information for the user.

An error of unknown origin, or of an origin not
correctly described by the other error codes.
An internal “consistency” error, often the result
of a corrupted state structure. These errors are
typically the result of a failed assertion.

A function attempted to allocate memory using
malloc() or a related function and was
unsuccessful. The message context

indicates the intended use of the memory.
One of the arguments passed to the function is
invalid. The message context  indicates
which argument and why.

The function is not supported by the
implementation, or the particular operation
implied by the given arguments is not
supported.

An iterative convergence algorithm failed to
converge within a reasonable number of
iterations.

The result of the calculation has been greater
than the maximal value of data type.

The result of the calculation has been less than
the minimal value of data type.
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The status of the last error reported is stored into the internal static
variable. Its value is the initiallgL_StsOk . The last status can be set by
calling RLSetStatus() and can be returned by callirgGetStatus()

If the application decides to ignore an error, it should reset the last status
back torRL_StsOk (seeRL_RSTERR() under ‘Error Macrog). An
application-supplied error handling function must update the last status
correctly; otherwise the Intel Recognition Primitives Library might fail.

Errors with status codes_StsBadArg, RL_StsOverflow  or
RL_StsUnderflow  are detected only by the debug version of the Intel
Recognition Primitives Library. Overflow and underflow cases are not
always checked, but only in functions with special integer scaling (see
“Interger Scalingin Chapter 1).

Error Handling Example

Example 2-Idescribes the default error handling for a console application.
In the exampl&LcFft()  represents a library functiomain() and
appFunc() represents application code.

The value of the error mode is seRio ErrModeParent . The
RL_ErrModeParent — option produces a more detailed account of the error
conditions.
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Example 2-1 Error Functions

/* application main function */

main()

{

}

SCplx samps[1024]
RLSetErrMode(RL_ErrModeParent);
appFunc(5, 45, samps);

if (RL_ERRCHK("main","compute something"))
exit(1);

return O;

/* application subroutine */
void appFunc(int orderl, int order2, SCplx *samps)

{

}

RLcFft(samps, orderl, RL_FORWARD);

if (RL_ERRCHK("appFunc","compute using orderl")) return;
RLcFft(samps, order2, RL_FORWARD);

if (RL_ERRCHK("appFunc","compute using order2")) return;
/* do some more work */

[* library function */
void RLcFft(SCplx * samps, int orderl, int flags);

{

if (order > 31) {
RL_ERROR(RL_StsBadArg, "RLcFft",
"order must be less than 32");
return;

}

/* code to do some real work goes here */

When the program is run, it produces the output illustrated in
Example 2-2
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Example 2-2 Output for the Error Function Program (RL_ErrModeParent)

RPL Error: Bad argument
in function [rlfft.c:231] RLcFft:
order must be less than 32
called from function [test.c:16] appFunc:
compute using order2
called from function [test.c:6] main:
compute something

If the program had run with the._ErrModeLeaf  option instead of
RL_ErrModeParent , only the first three lines of the above output would
have been produced before the program terminated.

Adding Your Own Error Handler

The Intel Recognition Primitives Library allows you to define your own

error handler. User-defined error handlers are useful if you want your
application to send error messages to a destination other than the standard
error output stream. For example, you can choose to send error messages to
a dialog box if your application is running under a Windows system or

you can choose to send error messages to a special log file.

There are two methods of adding your own error handler. In the first
method, you can replace tReError()  function or the complete error
handling library with your own code. Note that this method can only be
used at link time.

In the second method, you can userhBedirectError() function to
replace the error handler at run time. The steps below describe how to
create your own error handler and how to use the

RLRedirectError() function to redirect error reporting.

1. Define a function with the function prototype,ErrorCallBack() ,
as defined by the Intel Recognition Primitives Library.

2. Your application should then call tReRedirectError() function
to redirect error reporting for your own function. All subsequent calls
to RLError()  will call your own error handler.

3. To redirect the error handling back to the default handler, simply call
RLRedirectError() with aNULL pointer.
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Example 2-3llustrates a user-defined error handler function,
ownError() , which simply prints an error message constructed from its
arguments and exits

Example 2-3 A Simple Error Handler

RLStatus ownError(RLStatus status, const char *func,

{

main ()

const char *context, const char *file, int line)

fprintf(stderr, "IRPL error: %s, ", RLErrorStr(status));
fprintf(stderr, "function %s, ", func ? func : "<unknown>");
if (line > 0) fprintf(stderr, "line %d, ", line);

if (file I= NULL) fprintf(stderr, "file %s, ", file);

if (context) fprintf(stderr, "context %s\n", context);

exit(1);

extern RLErrCallBack ownError;

[* Redirect errors to your own error handler */
RLRedirectError(ownError);

/* Redirect errors back to the default error handler */
RLRedirectError(NULL);
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The functions described in this chapter perform vector initialization,
vector arithmetic, and logical operations on vectors.

Vector Initialization Functions

This section describes the functions in the Intel Recognition Primitives
Library which perform vector initialization.

bCopy

Initializes a vector with
the contents of a second
vector.

voi d RLbbCopy(const unsigned char *src, unsigned char
*dst, int srcStartPos, int dstStartPos, int n);
/* bit vectors */

voi d RLnbCopy(const unsigned char *src, unsigned char
*dst, int srcStartPos, int dstStartPos, int n);
/* 4-bit nibble vectors */

voi d RLybCopy(const unsigned char *src, unsigned char
*dst, int n);
/* unsigned byte vectors */

voi d RLt bCopy(const signed char *src, signed char *dst,
int n);
/* signed byte vectors */
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voi d RLwbCopy(const short int *src, short int *dst,

n);
/* 16-bit integer values */

voi d RLsbCopy(const float *src, float *dst, int
/* single precision; real values */

src Pointer to the source vector used to initialize
dst[i].

dst Pointer to the vector to beinitialized.

srcStart Pos For packed bit and nibble vectors, indicates the

position of the element within the first byte of the
source vector. For bit vectors this value can be 0
through 7 (O for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
canbeOor 1 (0 for the least significant nibble

and 1 for the most significant nibble).

dst St art Pos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
destination vector. For bit vectors this value can
be 0 through 7 (0 for the least significant bit and
7 for the most significant bit) and for nibble
vectorsit can be O or 1 (O for the least significant
nibble and 1 for the most significant nibble).

n The number of elementsto copy.

Discussion

The function RL?bCopy() copiesthefirst n elements from a source vector

src[i] intoadestination vector dst[i] (whereQ<=i<n).
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bSet

Initializes a vector with
a scalar value.

voi d RLbbSet (unsi gned char val, unsigned char *dst, int
startPos, int n);
/* bit vectors */

voi d RLnbSet (unsi gned char val, unsigned char *dst, int
startPos, int n);
/* 4-bit nibble vectors */

voi d RLybSet (unsi gned char val, unsigned char *dst, int
n);
/* unsigned byte vectors */

voi d RLtbSet (signed char val, signed char *dst, int n);
/* signed byte vectors */

voi d RLwbSet (short int val, short int *dst, int n);
/* 16-bit integer values */

void RLsbSet(float val, float *dst, int n);
/* single precision; real values */

val Thevalueused to initializedst [ i ] .
dst Pointer to the vector to be initialized.
st art Pos For packed bit and nibble vectors, indicates the

position of the element within the first byte of the
vector. For bit vectorsthisvalue can be 0
through 7 (O for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
canbeOor 1 (0 for the least significant nibble
and 1 for the most significant nibble).

n The number of elementsto initialize.
Discussion

Thefunction RL?bSet () initializesthefirst n elements of the vector
dst[i] (whereQ<=i<n)tocontain the samevalueval .
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bZero

Initializes a vector to

Zero.

voi d RLbbZero(unsigned char *dst, int startPos, int n);
/* bit vectors */

voi d RLnbZero(unsigned char *dst, int startPos, int n);
/* 4-bit nibble vectors */

voi d RLybZero(unsigned char *dst, int n);
/* unsigned byte vectors */

voi d RLtbZero(signed char *dst, int n);
/* signed byte vectors */

voi d RLwbZero(short int *dst, int n);
/* 16-bit integer vector */

voi d RLsbZero(fl oat *dst, int n);
/* single precision; real vector */

dst Pointer to the vector to beinitialized.

start Pos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
vector. For bit vectorsthisvalue can be 0
through 7 (O for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
canbeOor 1 (0 for the least significant nibble
and 1 for the most significant nibble).

n The number of elementsto initialize.

Discussion

Thefunction RL?bZer o() initializes the first n elements of the vector
dst[i] (whereO<=i<n)toO.
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GetBit

Gets a bit value froma
vector.

unsi gned char RLGetBit(const unsigned char *src, int n);

src Pointer to the source vector from which a bit
valueis extracted.

n Bit number (do not confuse with start position)
from the start of vector src[i] aligned on abyte
boundary.

Discussion

The function RLGet Bi t () getsthe value of bit n from avector src[i].
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SetBit

Initializes the value of a
bit within a vector.

voi d RLSet Bit (const
char val);

Src

val

Discussion

unsi gned char *src, int n, unsigned

Pointer to the source vector where the bit valueis
Set.

Bit number (do not confuse with start position)
from the start of vector src[i] aligned on abyte
boundary.

The value used to set the bit.

Thefunction RLSet Bi t () initializesbit n of avector src[i] with value

val .
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GetNibble

Gets a nibble value from
a vector.

unsi gned char RLGet Ni bbl e(const unsigned char *src, int

n);

src Pointer to the source vector from which the
nibble value is extracted.

n Nibble number (do not confuse with start
position) from the start of vector src[i] aligned
on a byte boundary.

Discussion

The function RLGet Ni bbl e() getsthe value of nibble n from a vector
srcli].
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SetNibble

Initializes the value of a
nibble within a vector.

voi d RLSet Ni bbl e(const unsi gned char *src, int n,
unsi gned char val);

src Pointer to the source vector where the nibble
valueisto beinitialized.

n Nibble number (do not confuse with start
position) from the start of vector src[i] aligned
on a byte boundary.

val The value used to set the nibble.

Discussion

Thefunction RLSet Ni bbl e() initializesnibble n of avector src[i] with
thevalueval .
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Vector Arithmetic Functions

This section describes the Recognition Primitives Library functions which
perform basic, element-wise operations between vectors. The library
provides two versions of each function. One version performs the
operation “in-place,” while the other stores the results of the operationin a
third vector.

bAdd2

Adds the e ements of two
vectors.

voi d RLnbAdd2(const unsigned char *src, unsigned char
*dst, int srcStartPos, int dstStartPos, int n, int
doScal e, int *scal eFactor);

/* 4-bit nibble vectors */

voi d RLybAdd2(const unsigned char *src, unsigned char
*dst, int n, int doScale, int *scal eFactor);
/* unsigned byte vectors */

voi d RLt bAdd2(const signed char *src, signed char *dst,
int n, int doScale, int *scal eFactor);
/* signed byte vectors */

voi d RLwbAdd2(const short int *src, short int *dst, int
n, int doScale, int *scal eFactor);
/* 16-bit integer vectors */

voi d RLsbAdd2(const float *src, float *dst, int n);
/* single precision; real values */

src Pointer to the vector to be added to dst [i ] .

dst Pointer to the vector dst [ i ] which storesthe
results of the additionsrc[i] +dst[i].

srcStart Pos For nibble vectors, indicates the position of the
element within the first byte of the source vector.
Thisvalue can be 0 or 1 (0 for the least
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significant nibble and 1 for the most significant
nibble).

dst St art Pos For nibble vectors, indicates the position of the
element within the first byte of the destination
vector. Thisvalue can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant

nibble).
n The number of elements to be added.
doScal eCut put , Refer to “ Integer Scaling” in Chapter 1.

scal eFact or

Discussion

Thefunction RL?bAdd2() addsthefirst n elements of a source vector
src[i] totheelementsof destination vector dst[i] (whereQ<=i<n).
The results of the operation are stored indst [ i ] .
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bAdd2s

Adds a scalar valueto a

vector.

voi d RLnbAdd2s(unsi gned char val, unsigned char *dst, int
startPos, int n, int doScale, int *scal eFactor);
/* 4-bit nibble vectors */

voi d RLybAdd2s(unsi gned char val, unsigned char *dst, int
n, int doScale, int *scal eFactor);
/* unsigned byte vectors */

voi d RLt bAdd2s(signed char val, signed char *dst, int n
int doScale, int *scal eFactor);
/* signed byte vectors */

voi d RLwbAdd2s(short int val, short int *dst, int n, int
doScal e, int *scal eFactor);
/* 16-bit integer vectors */

voi d RLsbAdd2s(fl oat val, float *dst, int n);
/* single precision; real values */

val The value to be added to each element of the
vector dst [i].
dst Pointer to the vector dst [ i ] which storesthe

results of the additionval +dst[i].

start Pos For nibble vectors, indicates the position of the
element within the first byte of the vector. This
value can be 0 or 1 (0 for the least significant
nibble and 1 for the most significant nibble).

n The number of elements to be operated on.
doScal eCut put , Refer to “ Integer Scaling” in Chapter 1.

scal eFact or

3-11



Intel Recognition Primitives Library Reference Manual

Discussion

Thefunction RL?bAdd2s() addsthe scalar value val to each element of
thefirst n elements of destination vector dst [i] (where0Q<=i<n). The
results of the operation are stored indst [i ] .
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bAdd3

Adds the e ements of two
vectors and stores the
result in a third vector.

voi d RLnbAdd3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int srcStartPos, int
dstStartPos, int n, int doScale, int *scal eFactor);

/* 4-bit nibble vectors */

voi d RLybAdd3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int n, int doScale, int
*scal eFactor) ;

/* unsigned byte vectors */

voi d RLt bAdd3(const signed char *srcA, const signed char
*srcB, signed char *dst, int n, int doScale, int
*scal eFactor) ;

/* signed byte vectors */

voi d RLwbAdd3(const short int *srcA, const short int
*srcB, short int *dst, int n, int doScale, int
*scal eFactor) ;

/* 16-bit integer vectors */

voi d RLsbAdd3(const float *srcA, const float *srcB, float
*dst, int n);
/* single precision; real values */

srcA, srcB Pointers to the vectors whose elements are to be
added together.
dst Pointer to the vector dst [ i ] which storesthe

results of the additionsrcA[i] +srcB[i].

srcStart Pos For nibble vectors, indicates the position of the
element within the first byte of the source vector.
Thisvalue can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant
nibble).
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dst St art Pos For nibble vectors, indicates the position of the
element within the first byte of the destination
vector. Thisvalue can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant

nibble).
n The number of elements to be added.
doScal eQut put , Refer to “ Integer Scaling” in Chapter 1.

scal eFact or

Discussion

Thefunction RL?bAdd3() addsthefirst n elements of the source vector
srcA[i] totheelementsof vector srcB[i] (whereO<=i<n). The
results of the operation are stored in the destination vector dst [i ] .
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bSub?2

Subtracts the el ements
of two vectors.

voi d RLnbSub2(const unsigned char *src, unsigned char
*dst, int srcStartPos, int dstStartPos, int n, int
doScal e, int *scal eFactor);

/* 4-bit nibble vectors */

voi d RLybSub2(const unsigned char *src, unsigned char
*dst, int n, int doScale, int *scal eFactor);
/* unsigned byte vectors */

voi d RLt bSub2(const signed char *src, signed char *dst,
int n, int doScale, int *scal eFactor);
/* signed byte vectors */

voi d RLwbSub2(const short int *src, short int *dst, int
n, int doScale, int *scal eFactor);
/* 16-bit integer vectors */

voi d RLsbSub2(const float *src, float *dst, int n);
/* single precision; real vectors */

src Pointer to the vector to be subtracted from
dst[i].
dst Pointer to the vector dst [ i ] which storesthe

results of the subtractiondst [i] - src[i].

srcStart Pos For nibble vectors, indicates the position of the
element within the first byte of the source vector.
Thisvalue can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant
nibble).

dst St art Pos For nibble vectors, indicates the position of the
element within the first byte of the destination
vector. Thisvalue can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant
nibble).
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n The number of elements to be subtracted.
doScal eQut put , Refer to “ Integer Scaling” in Chapter 1.

scal eFact or

Discussion

The function RL?bSub2() subtractsthefirst n elements of the source
vector src[i] from the elements of the destination vector dst [i ] (where
0<=i<n). Theresults of the operation are storedindst [i].
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bSub?2s

Subtracts a scalar value

from a vector.

voi d RLnbSub2s(unsi gned char val, unsigned char *dst, int
startPos, int n, int doScale, int *scal eFactor);
/* 4-bit nibble vectors */

voi d RLybSub2s(unsi gned char val, unsigned char *dst, int
n, int doScale, int *scal eFactor);
/* unsigned byte vectors */

voi d RLt bSub2s(signed char val, signed char *dst, int n
int doScale, int *scal eFactor);
/* signed byte vectors */

voi d RLwbSub2s(short int val, short int *dst, int n, int
doScal e, int *scal eFactor);
/* 16-bit integer vector */

voi d RLsbSub2s(float val, float *dst, int n);
/* single precision; real vector */

val The value to be subtracted from each element of
the vector dst[i].

dst Pointer to the vector dst [ i ] which storesthe
results of the subtractiondst[i] - val [i].

start Pos For nibble vectors, indicates the position of the
element within the first byte of the vector. This
value can be 0 or 1 (0 for the least significant
nibble and 1 for the most significant nibble).

n The number of elements to be operated on.
doScal eCut put , Refer to “ Integer Scaling” in Chapter 1.

scal eFact or

3-17



Intel Recognition Primitives Library Reference Manual

Discussion

The function RL?bSub2s() subtractsthe scalar value val from each
element of the destination vector dst [i ] (where0 <=1 <n). Theresults
of the operation are stored indst [i].
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bSub3

Subtracts the elements
of two vectors and
storestheresultin a
third vector.

voi d RLnbSub3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int srcStartPos, int
dstStartPos, int n, int doScale, int *scal eFactor);

/* 4-bit nibble vectors */

voi d RLybSub3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int n, int doScale, int
*scal eFactor) ;

/* unsigned byte vectors */

voi d RLt bSub3(const signed char *srcA, const signed char
*srcB, signed char *dst, int n, int doScale, int
*scal eFactor) ;

/* signed byte vectors */

voi d RLwbSub3(const short int *srcA, const short int
*srcB, short int *dst, int n, int doScale, int
*scal eFactor) ;

/* 16-bit integer vectors */

voi d RLsbSub3(const float *srcA, const float *srcB, float
*dst, int n, int doScale, int *scal eFactor);
/* single precision; real values */

srcA, srcB Pointers to the vectors whose el ements are to be
subtracted from each other.

dst Pointer to the vector dst [ i ] which storesthe
results of the subtractionsrcB[i] - srcA[i].

srcStart Pos For nibble vectors, indicates the position of the
element within the first byte of the source vector.
Thisvalue can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant
nibble).
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dst St art Pos For nibble vectors, indicates the position of the
element within the first byte of the destination
vector. Thisvalue can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant

nibble).
n The number of elements to be operated on.
doScal eQut put , Refer to “ Integer Scaling” in Chapter 1.

scal eFact or

Discussion

Thefunction RL?bSub3() subtractsthefirst n elements of the source
vector srcA[ i ] from the elements of the vector srcB[ i ]

(where 0 <=i <n). Theresults of the operation are stored in the
destination vector dst [ i ] .
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bMpy2

Multiplies the elements
of two vectors.

voi d RLnbMpy2(const unsigned char *src, unsigned char
*dst, int srcStartPos, int dstStartPos, int n, int
doScal e, int *scal eFactor);

/* 4-bit nibble vectors */

voi d RLybMpy2(const unsigned char *src, unsigned char
*dst, int n, int doScale, int *scal eFactor);
/* unsigned byte vectors */

voi d RLt bMpy2(const signed char *src, signed char *dst,
int n, int doScale, int *scal eFactor);
/* signed byte vectors */

voi d RLwbMpy2(const short int *src, short int *dst, int
n, int doScale, int *scal eFactor);
/* 16-bit integer vectors */

voi d RLsbMpy2(const float *src, float *dst, int n);
/* single precision; real vectors */

src Pointer to the vector to be multiplied with
dst[i].
dst Pointer to the vector dst [ i ] which storesthe

results of the multiplication src[i] * dst[i].

srcStart Pos For nibble vectors, indicates the position of the
element within the first byte of the source vector.
Thisvalue can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant
nibble).

dst St art Pos For nibble vectors, indicates the position of the
element within the first byte of the destination
vector. Thisvalue can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant
nibble).
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n The number of elements to be operated on.
doScal eQut put , Refer to “ Integer Scaling” in Chapter 1.

scal eFact or

Discussion

The function RL?bMpy2() multipliesthefirst n elements of a source
vector src[i] with the elements of a destination vector dst [ i ]
(where 0 <=i <n). Theresults of the operation are storedindst [i].
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bMpy2s

Multiplies a vector with

a scalar value.

voi d RLnbMpy2s(unsi gned char val, unsigned char *dst, int
startPos, int n, int doScale, int *scal eFactor);
/* 4-bit nibble vectors */

voi d RLybMpy2s(unsi gned char val, unsigned char *dst, int
n, int doScale, int *scal eFactor);
/* unsigned byte vectors */

voi d RLt bMpy2s(signed char val, signed char *dst, int n
int doScale, int *scal eFactor);
/* signed byte vectors */

voi d RLwbMpy2s(short int val, short int *dst, int n, int
doScal e, int *scal eFactor);
/* 16-bit integer vector */

voi d RLsbMpy2s(float val, float *dst, int n);
/* single precision; real vector */

val The value to be multiplied with each element of
the vector dst[i].

dst Pointer to the vector dst which stores the results
of the additionval * dst[i].

start Pos For nibble vectors, indicates the position of the
element within the first byte of the vector. This
value can be 0 or 1 (0 for the least significant
nibble and 1 for the most significant nibble).

n The number of elements to be operated on.
doScal eCut put , Refer to “ Integer Scaling” in Chapter 1.

scal eFact or
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Discussion

The function RL?bMpy2s() multipliesthe scalar value val with each
element of adestination vector dst [i] (whereQ<=1i<n). Theresults of
the operation are stored indst [i ] .
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bMpy3

Multiplies the elements
of two vectors and
storestheresultin a
third vector.

voi d RLnbMpy3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int srcStartPos, int
dstStartPos, int n, int doScale, int *scal eFactor);

/* 4-bit nibble vectors */

voi d RLybMpy3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int n, int doScale, int
*scal eFactor) ;

/* unsigned byte vectors */

voi d RLt bMpy3(const signed char *srcA, const signed char
*srcB, signed char *dst, int n, int doScale, int
*scal eFactor) ;

/* signed byte vectors */

voi d RLwbMpy3(const short int *srcA, const short int
*srcB, short int *dst, int n, int doScale, int
*scal eFactor) ;

/* 16-bit integer vectors */

voi d RLsbMpy3(const float *srcA, const float *srcB, float
*dst, int n);
/* single precision; real values */

srcA, srcB Pointers to the vectors whose el ements are to be
multiplied together.

dst Pointer to the vector dst [ i ] which storesthe
results of the multiplication srcA[i] * srcB[i].

srcStart Pos For nibble vectors, indicates the position of the
element within the first byte of the source vector.
Thisvalue can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant
nibble).
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dst St art Pos For nibble vectors, indicates the position of the
element within the first byte of the destination
vector. Thisvalue can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant

nibble).
n The number of elements to be operated on.
doScal eQut put , Refer to “ Integer Scaling” in Chapter 1.

scal eFact or

Discussion

The function RL?bMpy3() multipliesthefirst n elements of the source
vector srcA[ i ] with the elements of the vector srcB[ i ]

(where 0 <=i <n). Theresults of the operation are stored in the
destination vector dst [ i ] .
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bAbs

Computes the absolute
value of each vector
element.

voi d RLt bAbs(signed char *dst, int n);
/* signed byte vectors */

voi d RLwbAbs(short int *dst, int n);
/* 16-bit integer vector */

voi d RLsbAbs(float *dst, int n);
/* single precision; real vector */

dst Pointer to the vector dst [i ] . The absolute
values of the first n elementsin this vector will
be computed.

n The number of elements to be operated on.

Discussion

The function RL?bAbs () computes the absolute value of thefirst n
elementsin vector dst [i] (where0<=1i<n). Theresultsare stored in
dst[i].
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bAbs2

Computes the absolute
value of each vector
element and stores the
resultsin another
vector.

voi d RLt bAbs2(const signed char *src, signed char *dst,
int n);
/* signed byte vectors */

voi d RLwbAbs2(const short int *src, short int *dst, int

n);
/* 16-bit integer vector */
voi d RLsbAbs2(const float *src, float *dst, int n);
/* single precision; real vector */
src Pointer to the vector src[i]. The absolute
values of the elementsof src[i] will be
computed.
dst Pointer to the vector that stores the absolute
values of theelementsof src[i].
n The number of elements to be operated on.
Discussion

The function RL?bAbs2() computes the absolute value of thefirst n
elementsinvector src[i] (where0<=i<n). Theresultsof the
operation are stored in the vector dst [i] .
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bShiftL

Shifts the bits of each
element in the input
vector to the left by a
specified number of bits.

void RLnbShiftL(unsigned char *dst, int dstStartPos, int
n, int nShift);
/* 4-bit nibble vectors */

void RLybShiftL(unsigned char *dst, int n, int nShift);
/* unsigned byte vectors */

void RLtbShiftL(signed char *dst, int n, int nShift);
/* signed byte vectors */

void RLwbShiftL(short int *dst, int n, int nShift);
/* 16-bit integer vectors */

dst Pointer to the vector whose elements are to be
shifted.

n The length of the vector whose elements are to
be shifted.

dst St art Pos For nibble vectors, indicates the position of the

element within the nibble where the shifting will
begin. The position can be 0 or 1 (O for the least
significant nibble and 1 for the most significant
nibble).

nshi ft The number of bits by which the elements of the
vector will be shifted.

Discussion

The function RL?bshi ft L() shiftsthe bits of each element in the input
vector to the left by nshi ft bits. The vacated bits are filled with zeros.
For nibble vectors, the nibble where shifting will begin isindicated by
dst St art Pos.
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bShiftR

Shifts the bits of each
element in the input
vector to theright by a
specified number of bits.

voi d RLnbShi ftR(unsi gned char *dst, int dstStartPos, int
n, int nShift);
/* 4-bit nibble vectors */

voi d RLybShiftR(unsigned char *dst, int n, int nShift);
/* unsigned byte vectors */

void RLtbShiftR(signed char *dst, int n, int nShift);
/* signed byte vectors */

void RLwbShi ft R( short int *dst, int n, int nShift);
/* 16-bit integer vectors */

dst Pointer to the vector whose elements are to be
shifted.

n The length of the vector whose elements are to
be shifted.

dst St art Pos For nibble vectors, indicates the position of the

element within the nibble where the shifting will
begin. The position can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant
nibble).

nshi ft The number of bits by which the elements of the
vector will be shifted.

Discussion

The function RL?bshi ft R() shifts the bits of each element in the input
vector to the right by nshi f t bits. The vacated bits are filled with zeros.
For nibble vectors, the nibble where shifting will begin isindicated by
dst St art Pos.
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Sum

Computes the sum of all
elementsin a vector.

i nt RLbSun({unsi gned char *dst, int startPos, int n, int

doScal e, int

*scal eFactor) ;

/* bit vectors */

int RLnSun(unsi gned char *dst, int startPos, int n, int
doScal e, int *scal eFactor);
/* 4-bit nibble vectors */

int RLySum(unsi gned char *dst, int n, int doScale, int

*scal eFactor) ;

/* unsigned byte vectors */

int RLtSun(signed char *dst, int n, int doScale, int

*scal eFactor) ;

/* signed byte vectors */

i nt RLwSun{short

*scal eFactor) ;
/* 16-bit

float RLsSum(fl oat

*dst, int n, int doScale, int

i nteger vector */

*dst, int n);

/* single precision; real vector */

dst

st art Pos

n

doScal eQut put ,
scal eFact or

Pointer to the vector whose elements are to be
summed.

For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
vector. For bit vectorsthisvalue can be 0
through 7 (O for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
canbeOor 1 (0 for the least significant nibble
and 1 for the most significant nibble).

The number of elements to be operated on.

Refer to “ Integer Scaling” in Chapter 1.
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Discussion

The function RL?Sun() computes and returns the sum of the first n
elements of the vector dst [i ] (where0 <=1i<n).
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Min

Finds the minimum
valued element of a

vector.

unsi gned char RLnM n(unsi gned char *src, int startPos,
int n, int *position);
/* 4-bit nibble vectors */

unsi gned char RLyM n(unsigned char *src, int n, int
*position);
/* unsigned byte vectors */

signed char RLtM n(signed char *src, int n, int
*position);
/* signed byte vectors */

short int RLwM n(short int *src, int n, int *position);
/* 16-bit integer vector */

float RLsMn(float *src, int n, int *position);
/* single precision; real vector */

src Pointer to the vector src[i ] whose minimum-
valued element is to be found.

start Pos For nibble vectors, indicates the position of the
element within the first byte of the vector. This
value can be 0 or 1 (0 for the least significant
nibble and 1 for the most significant nibble).

n The number of elements to be operated on.
posi tion The index of the minimum-valued element.
Discussion

Thefunction RL?M n() finds the minimum-valued element of thefirst n
elements of the vector src[i] (where0 <=1 <n); itsindex isreturnedin
posi tion.
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Max

Finds the maximum
valued e ement of a
vector.

unsi gned char RLnMax(unsigned char *src, int startPos,
int n, int *position);
/* 4-bit nibble vectors */

unsi gned char RLyMax(unsigned char *src, int n, int
*position);
/* unsigned byte vectors */

si gned char RLt Max(signed char *src, int n, int
*position);
/* signed byte vectors */
short int RLwivax(short int *src, int n, int *position);
/* 16-bit integer vector */

float RLsMax(float *src, int n, int *position);
/* single precision; real vector */

src Pointer to the vector whose maximum-valued
element isto be found.

start Pos For nibble vectors, indicates the position of the
element within the first byte of the vector. This
value can be 0 or 1 (0 for the least significant
nibble and 1 for the most significant nibble).

n The number of elements to be operated on.
posi tion The index of the maximum-valued element.
Discussion

Thefunction RL?Max () finds the maximum-valued element of the first n
elements of the vector src[i] (where0 <=1 <n); itsindex isreturned in
posi tion.
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Vector Logical Functions

This section describes the Recognition Primitives Library functions which
perform basic, element-wise logical operations between vectors. The
library provides two versions of each function. One version performsthe
operation “in-place,” while the other stores the results of the operationin a

third vector.
bAnd2
ANDs the elements of
two vectors,

voi d RLbbAnd2(const unsigned char *src, unsigned char
*dst, int srcStartPos, int dstStartPos, int n);
/* bit vectors */

voi d RLnbAnd2(const unsigned char *src, unsigned char
*dst, int srcStartPos, int dstStartPos, int n);
/* 4-bit nibble vectors */

voi d RLybAnd2(const unsigned char *src, unsigned char
*dst, int n);
/* unsigned byte vectors */

voi d RLwbAnd2(const short int *src, short int *dst, int

n);
/* 16-bit integer vectors */
src Pointer to the vector to be bitwise ANDed with
elements of vector dst [i].
dst Pointer to the vector dst [ i ] which storesthe
results of the AND operation src[i] ANDdst[i].
srcStart Pos For packed bit and nibble vectors, indicates the

position of the element within the first byte of the
source vector. For bit vectors this value can be 0
through 7 (O for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
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canbeOor 1 (0 for the least significant nibble
and 1 for the most significant nibble).

dst St art Pos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
destination vector. For bit vectors this value can
be 0 through 7 (0 for the least significant bit and
7 for the most significant bit) and for nibble
vectorsit can be O or 1 (O for the least significant
nibble and 1 for the most significant nibble).

n The number of elements to be operated on.

Discussion

The function RL?bAnd2() performs an element-wise logical AND of the
first n elements of asource vector src[i] withthefirst n elements of the
destination vector dst [i] (where0<=i<n). Theresultsare stored in
dst[i]. Each pair of elementsis bit-wise ANDed.
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bAnd2s

ANDs the elements of a
vector with a scalar
value.

voi d RLnbAnd2s(const unsigned char val, unsigned char
*dst, int startPos, int n);
/* 4-bit nibble vectors */

voi d RLybAnd2s(const unsigned char val, unsigned char
*dst, int n);

/* unsigned byte vectors */
voi d RLwbAnd2s(const short int val, short int *dst, int
n);

/* 16-bit integer vectors */

val The scalar which is ANDed with each vector
element.

dst Pointer to the vector dst [ i ] which storesthe
results of the AND operation dst [i ] ANDval .

start Pos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
vector. For bit vectorsthisvalue can be 0
through 7 (O for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
canbeOor 1 (0 for the least significant nibble
and 1 for the most significant nibble).

n The number of elements to be operated on.
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Discussion

The function RL?bAnd2s() performs an element-wise logical AND of the
scalar val with thefirst n elements of adestination vector dst[i]. The
resultsarestored indst [i] (where0<=i<n). Thescalar isbit-wise
ANDed with each of thefirst n elements of the vector.
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bAnd3

ANDs the elements of
two vectors and stores
theresult in a third
vector.

voi d RLbbAnd3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int srcStartPos, int
dst StartPos, int n);

/* bit vectors */

voi d RLnbAnd3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int srcStartPos, int
dst StartPos, int n);

/* 4-bit nibble vectors */

voi d RLybAnd3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int n);
/* unsigned byte vectors */

voi d RLwbAnd3(const short int *srcA, const short int
*srcB, short int *dst, int n);
/* 16-bit integer vectors */

srcA, srcB Pointers to the vectors whose el ements are to be
bitwise ANDed.

dst Pointer to the vector dst [ i ] which storesthe
results of the AND operation srcA[i] AND
srcB[i].

srcStart Pos For packed bit and nibble vectors, indicates the

position of the element within the first byte of the
source vector. For bit vectors this value can be 0
through 7 (O for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
canbe O or 1 (0 for the least significant nibble
and 1 for the most significant nibble).

dst St art Pos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
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destination vector. For bit vectorsthis value can
be 0 through 7 (0 for the least significant bit and
7 for the most significant bit) and for nibble
vectorsit can be O or 1 (O for the least significant
nibble and 1 for the most significant nibble).

n The number of elements to be operated on.

Discussion

The function RL?bAnd3() performs an element-wise logical AND of the
first n elements of asource vector srcA[ i ] withthefirst n elements of
another vector srcB[i] (where0O<=1i<n). Theresultsare storedin
dst[i]. Each pair of elementsis bit-wise ANDed.
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bXor2

XORs the elements of
two vectors,

voi d RLbbXor2(const unsigned char *src, unsigned char
*dst, int srcStartPos, int dstStartPos, int n);
/* bit vectors */

voi d RLnbXor2(const unsigned char *src, unsigned char
*dst, int srcStartPos, int dstStartPos, int n);
/* 4-bit nibble vectors */

voi d RLybXor2(const unsigned char *src, unsigned char
*dst, int n);

/* unsigned byte vectors */
voi d RLwbXor 2(const short int *src, short int *dst, int
n);

/* 16-bit integer vectors */
src Pointer to the vector to be bitwise XORed with

dst[i].

dst Pointer to the vector dst [ i ] which storesthe
results of the XOR operation src[i] XORdst[i].

srcStart Pos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
source vector. For bit vectors this value can be 0
through 7 (O for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
canbeOor 1 (0 for the least significant nibble
and 1 for the most significant nibble).

dst St art Pos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
destination vector. For bit vectorsthis value can
be 0 through 7 (0 for the least significant bit and
7 for the most significant bit) and for nibble
vectorsit can be O or 1 (O for the least significant
nibble and 1 for the most significant nibble).
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n The number of elements to be operated on.

Discussion

The function RL?bXor 2() performs an element-wise logical XOR of the
first n elements of asource vector src[i] withthefirst n elementsof a
destination vector dst [i] (where 0 <=1 <n). Theresults of the operation
arestoredindst [i]. Each pair of elementsis bit-wise XORed.
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bXor2s

XORs the elements of a
vector with a scalar
value.

voi d RLnbXor 2s(const unsigned char val, unsigned char
*dst, int startPos, int n);
/* 4-bit nibble vectors */

voi d RLybXor2s(const unsigned char val, unsigned char
*dst, int n);
/* unsigned byte vectors */

voi d RLwbXor 2s(const short int val, short int *dst, int

n);
/* 16-bit integer vectors */

val The scalar which is XORred with each vector
element.

dst Pointer to the vector dst [ i ] which storesthe
results of the XOR operation dst [i ] XORval [i].

start Pos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
vector. For bit vectorsthisvalue can be 0
through 7 (O for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
canbeOor 1 (0 for the least significant nibble
and 1 for the most significant nibble).

n The number of elements to be operated on.

Discussion

The function RL?bXor 2s() performs an element-wise logical XOR of the
scalar val with the first n elements of a destination vector dst [i ] (where
0<=i<n). Theresults of the operation are storedindst [i]. The scalar
is bit-wise XORred with each element of the vector.
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bXor3

XORs the elements of
two vectors and stores
theresult in a third
vector.

voi d RLbbXor 3( const

char *srcB,

dst St ar t Pos,

unsi gned char *srcA, const unsigned

unsi gned char *dst, int srcStartPos, int

/* bit vectors */

voi d RLnbXor 3( const

char *srcB,

dst St ar t Pos,
/* 4-bit

voi d RLybXor 3(const
unsi gned char *dst, int n);

char *srcB,

unsi gned char *srcA, const unsigned

unsi gned char *dst, int srcStartPos, int

ni bbl e vectors */

unsi gned char *srcA, const unsigned

/* unsigned byte vectors */

voi d RLwbXor 3( const
*srcB, short
/* 16-bit

srcA,srcB

dst

srcSt art Pos

dst St art Pos

short int *srcA, const short int

*dst, int n);
i nteger vectors */

Pointers to the vectors whose el ements are to be
bitwise XORed.

Pointer to the vector dst [ i ] which storesthe
results of the XOR operation srcA[ i ] XOR
srcB[i].

For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
source vector. For bit vectors this value can be 0
through 7 (O for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
canbeOor 1 (0 for the least significant nibble
and 1 for the most significant nibble).

For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
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destination vector. For bit vectorsthis value can
be 0 through 7 (0 for the least significant bit and
7 for the most significant bit) and for nibble
vectorsit can be O or 1 (O for the least significant
nibble and 1 for the most significant nibble).

n The number of elements to be operated on.

Discussion

The function RL?bXor 3() performs an element-wise logical XOR of the
first n elements of asource vector srcA[ i ] withthefirst n elements of
another vector srcB[i] (where0<=i <n). Theresults of the operation
arestoredindst [i]. Each pair of elementsis bit-wise XORed.
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bOr2

ORs the elements of two
vectors.

voi d RLbbOr2(const unsigned char *src, unsigned char
*dst, int srcStartPos, int dstStartPos, int n);
/* bit vectors */

void RLnbOr 2(const unsigned char *src, unsigned char
*dst, int srcStartPos, int dstStartPos, int n);
/* 4-bit nibble vectors */

void RLybOr2(const unsigned char *src, unsigned char
*dst, int n);

/* unsigned byte vectors */
void RLwbOr 2(const short int *src, short int *dst, int
n);

/* 16-bit integer vectors */
src Pointer to the vector to be bitwise ORed with

elementsof dst[i].

dst Pointer to the vector dst [ i ] which storesthe
results of the OR operationsrc[i] ORdst[i].

srcStart Pos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
source vector. For bit vectors this value can be 0
through 7 (O for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
canbeOor 1 (0 for the least significant nibble
and 1 for the most significant nibble).

dst St art Pos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
destination vector. For bit vectors this value can
be 0 through 7 (0 for the least significant bit and
7 for the most significant bit) and for nibble
vectorsit can be O or 1 (O for the least significant
nibble and 1 for the most significant nibble).
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n The number of elements to be operated on.

Discussion

The function RL?bOr 2() performs an element-wise logical OR of the first
n elements of asource vector src[i] withthefirst n elements of a
destination vector dst [i] (where0O<=i <n). Theresultsare storedin
dst[i]. Each pair of elementsis bit-wise ORed.
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bOr2s

ORsthe elements of a
vector with a scalar
value.

voi d RLnbOr 2s(const unsigned char val, unsigned char
*dst, int startPos, int n);
/* 4-bit nibble vectors */

voi d RLybOr 2s(const unsigned char val, unsigned char
*dst, int n);
/* unsigned byte vectors */

voi d RLwbOr 2s(const short int val, short int *dst, int

n);
/* 16-bit integer vectors */

val The scalar which is OrRed with each vector
element.

dst Pointer to the vector dst [ i ] which storesthe
results of the OR operationdst [i] ORval .

start Pos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
vector. For bit vectorsthisvalue can be 0
through 7 (O for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
canbeOor 1 (0 for the least significant nibble
and 1 for the most significant nibble).

n The number of elements to be operated on.

Discussion

The function RL?bOr 2s() performs an element-wise logical OR of the
scalar val with the first n elements of a destination vector dst [i ] (where
0<=i <n). Theresultsare storedindst[i]. Thescalar isbit-wise
ORed with each element of the vector.
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bOr3

ORs the elements of two
vectors and stores the
result in a third vector.

voi d RLbbOr 3( const
char *srcB
dst StartPos, int n);

unsi gned char
unsi gned char *dst,

*srcA, const unsigned
nt srcStartPos, int

/* bit vectors */

voi d RLnbOr 3( const
char *srcB
dst StartPos, int n);

unsi gned char
unsi gned char *dst,

*srcA, const unsigned
nt srcStartPos, int

/* 4-bit nibble vectors */
voi d RLybOr 3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int n);

/* unsigned byte vectors */
void RLwbOr 3(const short int *srcA, const short int

*srcB, short int

/* 16-bit intege
srcA,srcB
dst

srcSt art Pos

dst St art Pos

*dst, int n);

r vectors */

Pointers to the vectors whose el ements are to be
bitwise ORred.

Pointer to the vector dst [ i ] which storesthe
results of the OR operationsrcA[i] ORsrcB[i].

For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
source vector. For bit vectors this value can be 0
through 7 (O for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
canbeOor 1 (0 for the least significant nibble
and 1 for the most significant nibble).

For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
destination vector. For bit vectors this value can
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be 0 through 7 (0 for the least significant bit and
7 for the most significant bit) and for nibble
vectorsit can be O or 1 (O for the least significant
nibble and 1 for the most significant nibble).

n The number of elements to be operated on.

Discussion

The function RL?bOr 3() performs an element-wise logical OR of the first
n elements of asource vector srcA[ i | withthefirst n elements of another
vector srcB[i] (WhereO<=i <n). Theresultsarestoredindst[i].
Each pair of elementsis bit-wise ORed.
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bNot

Performs alogical NOT
of the elements of a
vector.

voi d RLbbNot (unsi gned char *dst, int startPos, int n);
/* bit vectors */

voi d RLnbNot (unsi gned char *dst, int startPos, int n);
/* 4-bit nibble vectors */

voi d RLybNot (unsi gned char *dst, int n);
/* unsigned byte vectors */

voi d RLwbNot (short int *dst, int n);
/* 16-bit integer vectors */

dst Pointer to the vector dst [ i ] which storesthe
results of the logical operation NOT dst [ i ] .

start Pos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
vector. For bit vectorsthisvalue can be 0
through 7 (O for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
canbeOor 1 (0 for the least significant nibble
and 1 for the most significant nibble).

n The number of elements to be operated on.

Discussion

The function RL?bNot () performsabit-wiselogical NOT of thefirst n
elements of the vector dst [i ] (where0 <=i <n). Theresults of the
operation are stored in the vector dst [i ] .
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The functions described in this chapter perform signal processing. The
following signal processing tasks are supported.

* Windowing (Bartlett, Hamming, etc.)

» Fast Fourier Transform (FFT)

» Signal Pre-emphasis

» Cepstral Analysis

Windowing Functions

This section describes several of the windowing functions commonly used
in digital signal processing. Windowing refers to the weighting applied to
the individual points in the-point signal frame. It is specified by a

transfer function of the form(n) =7 (n) wherer is a function ofr. For a
speech signal of a given window length (thah)st is usually desirable to
have a wide passband and a large attenuation outside the passband. The
windows listed inTable 4-lare supported:
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Table 4-1 Window Transfer Functions

Window Name Window Transfer Function

Hamming h(n) = 0.54 - 0.46 * cos(2*pi*n/(N-1)) 0<=n<=N-1
=0 otherwise

Hann h(n) = 0.5 - 0.5*cos(2*pi*n/(N-1)) 0<=n<=N-1
=0 otherwise

Bartlett (triangle) h(n) = 2n/(N-1) 0 <=n<=(N-1)/2
=2 -2n/(N-1) (N-1)/2 < n<=N-1
=0 otherwise

Blackman h(n) = 0.42 - 0.5*cos(2*pi*n/(N-1))

+ 0.08*cos(4*pi*n/(N-1)) 0<=n<=N-1

=0 otherwise

Example 4-1shows the code for windowing a signal and taking its FFT.

Example 4-1 Window and FFT a Single Frame of a Signal

/* Window and FFT a single frame of a signal.

* Note that output size = N/2 + 2 where N is the input size

* The output of the FFT is in conjugate-symmetric format (see under
*/ “Fast Fourier Transform”.

float xTime[256];
SCplx xFreq[128];

/* Insert code here to put time-domain samples in xTime */

RLsWinHamming(xTime, 128);
RLsRealFftNip(xTime, xFreq, 7, RL_FORWARD);

The windowing functions save the window coefficients internally. Thus,
the window coefficients do not have to be computed every time the

function is called. However, the coefficients depend on the input size so
they need to be recomputed whenver the input size changes. If the same
windowing function needs to be called for different sized inputs, then it is
better to first calculate the window by calling one of the windowing
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functions RL?winHamming() , for example) on a vector with all elements
set to 1.0. This vector can then be multiplied with the input signal vector
to get the windowed signal vector.

WinBartlett

Multiplies a vector by a
Bartlett windowing
function.

void RLwWinBartlett(short int * vect , int n, int
doScaleOutput , int * scaleFactor );
/* 16-bit integer vector */

void RLsWinBartlett(float * vect , int n;
/* single precision; real vector */

vect Pointer to the vector to be multiplied by the
chosen windowing function.

n The length of the vectareci/n]

doScaleOutput Refer to fnteger Scalingin Chapter 1.

scaleFactor

Discussion

The functionRL?WinBartlett() multiplies a vector by the Bartlett

(triangle) window. To obtain the window samples themselves, set all of
the elements of the vectasci/n]  to unity.
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WinBlackman

Multiplies a vector by a
Blackman windowing
function.

void RLwWinBlackman(short int * vect , int n, int
doScaleOutput , int* scaleFactor ),
/* 16-bit integer vector */

void RLsWinBlackman(float * vect , int ny;
/* single precision; real vector */

vect Pointer to the vector to be multiplied by the
chosen windowing function.

n The length of the vectarect/n]

doScaleOutput Refer to fnteger Scalingin Chapter 1.

scaleFactor

Discussion

The functionRL?WinBlackman() multiplies a vector by the Blackman
window. To obtain the window samples themselves, set all of the elements
of the vectowect/n] to unity.
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WinHamming

Multiplies a vector by a
Hamming windowing
function.

void RLwWinHamming(short int * vect , int n, int
doScaleOutput , int * scaleFactor ),
/* 16-bit integer vector */

void RLsWinHamming(float * vect , int ny;
/* single precision; real vector */

vect Pointer to the vector to be multiplied by the
chosen windowing function.

n The length of the vectarect/n]

doScaleOutput Refer to fnteger Scalingin Chapter 1.

scaleFactor

Discussion

The functionRL?WinHamming() multiplies a vector by the Hamming
window. To obtain the window samples themselves, set all of the elements
of the vectowect/n] to unity.
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WinHann

Multiplies a vector by a
Hann windowing
function.

void RLwWinHann(short int * vect , int n, int
doScaleOutput , int* scaleFactor ),
/* 16-bit integer vector */

void RLsWinHann(float * vect , int ny;
/* single precision; real vector */

vect Pointer to the vector to be multiplied by the
chosen windowing function.

n The length of the vectarect/n]

doScaleOutput Refer to Integer Scalingin Chapter 1.

scaleFactor

Discussion

The functionRL?WinHann() multiplies a vector by the Hann window. To
obtain the window samples themselves, set all of the elements of the vector
vect[n] 1o unity.
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FreeWinTbls

Frees all internal
memory allocated by
windowing functions.

void RLwFreeWinHammingTbls (void);
void RLsFreeWinHammingTbls (void);
void RLwFreeWinHanningTbls (void);
void RLsFreeWinHammingTbls (void);
void RLwFreeWinBlackmanThbls (void);
void RLsFreeWinBlackmanTbls (void);
void RLwFreeWinBartlettThls (void);
void RLsFreeWinBartlettThls (void);

Discussion

The functionRL?FreeWin..Thls() frees all internal memory that was
allocated for windowing transfer function tables during windowing
evaluations.
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Fast Fourier Transforms

This section describes the functions which compute the Fast Fourier
Transform (FFT). The minimal complete set of FFT functions for float and
16-bit integer data is provided. FFT functions allocate internal memory for
twiddle factors and bit-reversed indices. The function for deallocating
internal memory dedicated to FFTs is provided.

Format Descriptions

The input and output of the complex-valued FFT are formatted as a vector
of typewcCplx (for 16-bit integer-valued inputs) adpix (for floating-

point valued inputs). Functions are provided in the library to obtain the
magnitude, power spectrum, log magnitude or log-power spectrum of the
complex output.

The C type definitions fowcCpix andscpix are as follows:

typedef struct _WCplx {
short int re;
short int im;

} WCplx;

typedef struct _SCplx {
float re;
float im;

} SCplx;

The input of the real-valued FFT is a vector of typet int (for 16-bit
integer-valued inputs) anat  (for floating-point valued inputs). If
complex values[i] ,i=0,...,n, n=2 ** are the output of a real-valued
FFT, theny[o] ,y[n/2] arereal, andlii andy[n-i], i=0,.,n/2-1
arecomplex-conjugate. The result of a real-valued FFT is stored in a real
vector of sizenin the following order (complex-conjugate format):

0 1 2 3 we | N2 n-1
y[O] | y[n/2] | y[1l].re | y[1].im | ... | y[n/2-1].re | y[n/2-1].im

Fororder=0 a vector in complex-conjugate format contains one element.
This format coincides with the PERM format of the NSP library. If the
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float vectorsamps contains the real-valued FFT output in complex-
conjugate format, other outputs can be computed as follows:
Csamps = (SCplx*)samps;
Csamps[n/2].re = Csamps|[0].im;
Csamps[n/2].im = Csamps[0].im = (float)0.0;
for (i=1; i<n/2; i++) {
Csampsin-i].re = Csamps]i].re;
Csamps[n-i].im = -Csamps]i].im;
} 1* for */

The input of the complex-conjugate FFT is a vector of tyjpe int

(for 16-bit integer-valued inputs) amdat  (for floating-point valued
inputs) in complex-conjugate format. The output is a vector of the same
length.
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Fft

Computes the forward
or inverse Fast Fourier
Transform (FFT) of a
complex signal in-place.

void RLVFft (WCplx *

doScaleOutput,

samps, int order , int flags, int

*scaleFactor );

/* In-place transform for 16-bit integer complex
vector. Computes the 16-bit integer complex

output */

void RLcFft (SCplx *

samps, int order , int flags );

/* In-place transform for single-precision complex
vector. Computes the single-precision complex

output */

samps

order

flags

doScaleOutput
scaleFactor

Input vector for in-place transform. The output is
written to the same vector.

The size of the transform expressed as a power of
2. The length obamps is expected to b .

Options for the transform. The following options
are currently supported:

RL_FORWARD Forward transform
RL_INVERSE Inverse transform

RL_INVERSE_NOSCALE Inverse transform
without scaling (that is, the transform output is
not multiplied by1/N whereN is the length of
transform).

RL_FAST Call the faster but
lower accuracy FFT code. Only for integer FFT
functions.

Refer to ‘Integer Scalingin Chapter 1.
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Discussion

The functionrRL?Fft() performs a Fast Fourier Transform (FFT) on the
complex input vectosamps. The computation is done in-place and the
complex output vector is written backd4emnps. Internally, a radix-4

algorithm is used.
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FftNip

Computes the forward
or inverse Fast Fourier
Transform (FFT) of a
complex signal not-in-
place.

void RLVFftNip (const WCplx *inSamps , WCplx  *outSamps ,
int order ,int flags, int  doScaleOutput, int
*scaleFactor );

/* Not-in-place transform for 16-bit integer complex

vector. Computes the 16-bit integer complex

output */

void RLcFftNip (const SCplx *inS amps, SCplx *outSamps,
int order ,int flags );

/* Not-in-place transform for single-precision complex

vector. Computes the single-precision complex

output */

inSamps Input vector for not-in-place transform.

outSamps Output vector for not-in-place transform.

order The size of the transform expressed as a power of
2. The length of the input and output vectors is
expected to be™ .

flags Options for the transform. The following options
are currently supported:
RL_FORWARD Forward transform
RL_INVERSE Inverse transform

RL_INVERSE_NOSCALE Inverse transform
without scaling (that is, the transform output is
not multiplied by1/N whereN is the length of
transform).
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RL_FAST Call the faster but
lower accuracy FFT code. Only for integer FFT
functions.

doScaleOutput Refer to ‘Integer Scalingin Chapter 1.
scaleFactor

Discussion

The functionRL?FftNip()  performs a Fast Fourier Transform (FFT) on
the complex input vectonSamps . The complex output vector is written
to outSamps . Internally, a radix-4 algorithm is used.

4-13
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RealFft

Computes the forward
or inverse Fast Fourier
Transform (FFT) of an
integer- or real-valued
signal in-place.

void RLwRealFft (short int * samps, int order , int flags ,
int doScaleOutput ,int* scaleFactor ),

/* In-place transform for 16-bit integer vector.

Computes the 16-bit integer output vector in

complex-conjugate format */

void RLsRealFft (float * samps, int order , int flags);
/* In-place transform for single-precision real
vector. Computes the single-precision output
vector in complex-conjugate format */

samps Input vector for in-place transform. The output
is written to the same vector.

order The size of the transform expressed as a power of
2. The length ofamps is expected to bg™ .

flags Options for the transform. The following options
are currently supported:

RL_FORWARD Forward transform
RL_INVERSE Inverse transform

RL_INVERSE_NOSCALE Inverse transform
without scaling (that is, the transform output is
not multiplied by1/N, whereN is the length of
the transform).

RL_FAST Call the faster but
lower accuracy FFT code. Only for integer FFT
functions.
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doScaleOutput Refer to ‘Integer Scalingin Chapter 1.
scaleFactor
Discussion

The functionRL?RealFft()  performs a Fast Fourier Transform (FFT) on
the real input vectosamps. The computation is done in-place and the
output vector in complex-conjugated format is written backataps.
Internally, a radix-4 algorithm is used.
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RealFftNip

Computes the forward
or inverse Fast Fourier
Transform (FFT) of an
integer- or real-valued
signal not-in-place.

void RLwRealFftNip (const short int * inSamps , short int
* outSamps , int order , int flags ,int doScaleOutput , int
* scaleFactor ),

/* Not-in-place transform for 16-bit integer vector.

Computes the 16 bit integer output vector in

complex-conjugated format */

void RLsRealFftNip (const float * inSamps , float
* outSamps , int order , int flags);
/* Not-in-place transform for single-precision real
vector. Computes the single-precision output
vector in complex-conjugated format */

inSamps Input vector for not-in-place transform.
outSamps Output vector for not-in-place transform.
order The size of the transform expressed as a power of

2. The length of the input and output vectors is
expected to bg™ .

flags Options for the transform. The following options
are currently supported:

RL_FORWARD Forward transform
RL_INVERSE Inverse transform

RL_INVERSE_NOSCALE Inverse transform
without scaling (that is, the transform output is
not multiplied by1/N, whereN is the length of
the transform).
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RL_FAST Call the faster but
lower accuracy FFT code. Only for integer FFT
functions.

doScaleOutput Refer to ‘Integer Scalingin Chapter 1.

scaleFactor

Discussion

The functionRL?RealFftNip() performs a Fast Fourier Transform (FFT)
on the real input vectonsamps . The output vector in complex-conjugate
format is written tautSamps . Internally, a radix-4 algorithm is used.

In Example 4-ZheRLsRealFft()  function is used to calculate the FFT
of a 128-point real input signal.

Example 4-2 Using RLsRealFft() to Perform the FFT

[* Calculate the FFT of a 128-point real input signal

* Input signal is in X, output is also in x

* Order of the FFT is 7 (log-base-2 of 128).

* Qutput size is N/2 float values, because only half
*the FFT is generated (the FFT of a real signal being
* conjugate-symmetric). The FFT is done in-place.

*/

float x[128];

[* Insert code here to put the 128 samples in x */
RLsRealFft(x, 7, RL_FORWARD);
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CcsFit

Computes the forward
or inverse Fast Fourier
Transform (FFT) of an
integer- or real-valued
complex-conjugated

signal in-place.

void RLwCcsFft (short int * samps, int order , int flags

int  doScaleOutput

,int* scaleFactor ),

/* In-place transform for 16-bit integer vector in
complex-conjugated format. Computes the 16-bit
integer output vector */

void RLsCcsFtt (float *

samps, int order , int flags);

/* In-place transform for single-precision real vector
in complex-conjugated format. Computes the single-
precision output vector */

samps

order

flags

Input vector for in-place transform. The output is
written to the same vector.

The size of the transform expressed as a power of
2. The length ofamps is expected to be™2 .

Options for the transform. The following options
are currently supported:

RL_FORWARD Forward transform
RL_INVERSE Inverse transform

RL_INVERSE_NOSCALE Inverse transform
without scaling (that is, the transform output is
not multiplied by1/N, whereN is the length of
the transform).

RL_FAST Call the faster but
lower accuracy FFT code. Only for integer FFT
functions.
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doScaleOutput Refer to ‘Integer Scalingin Chapter 1.
scaleFactor
Discussion

The functionrRL?CcsFit()  performs a Fast Fourier Transform (FFT) on
samps, the input vector in complex-conjugate format. The computation is
done in-place and the output real vector is written backitps.

Internally, a radix-4 algorithm is used.
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CcsFftNip

Computes the forward
or inverse Fast Fourier
Transform (FFT) of an
integer- or real-valued
complex-conjugated
signal not-in-place.

void RLwCcsFftNip (const short int * inSamps , short int
* outSamps , int order , int flags , int doScaleOutput , int
* scaleFactor );
/* Not-in-place transform for 16-bit integer vector in
complex-conjugated format. Computes the 16-bit
integer output vector */

void RLsCcsFftNip (const float * inSamps , float * outSamps ,
int  order ,int flags);

/* Not-in-place transform for single-precision real

vector in complex-conjugated format. Computes the

single-precision output vector */

inSamps Input vector for not-in-place transform.
outSamps Output vector for not-in-place transform.
order The size of the transform expressed as a power of

2. The length of the input and output vectors is
expected to be"2 .

flags Options for the transform. The following options
are currently supported:

RL_FORWARD Forward transform
RL_INVERSE Inverse transform

RL_INVERSE_NOSCALE Inverse transform
without scaling (that is, the transform output is
not multiplied by1/N, whereN is the length of
the transform).
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RL_FAST Call the faster but
lower accuracy FFT code. Only for integer FFT
functions.

doScaleOutput Refer to Integer Scalingin Chapter 1.

scaleFactor

Discussion

The functionRL?CcsFitNip()  performs a Fast Fourier Transform (FFT)
oninSamps , the input vector in complex-conjugate format. The output
real vector is written toutSamps . Internally, a radix-4 algorithm is used.
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FreeFftTbls

Frees all internal
memory allocated for
FFT computation.

void RLFreeFftTbls (void);

Discussion

The functionRLFreeFftThls() frees all internal memory that was
allocated for twiddle factors and bit-reversed indices tables during FFT

evaluation.
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Speech Specific Signal Processing

The functions described in this section perform signal processing and
feature extraction operations that are commonly done on speech signals.
These functions are

* Signal pre-emphasis
* Cepstral analysis

Signal Pre-emphasis

The spectrum of voiced speech normally exhibits an overall -6dB/octave
roll-off due to the effects of lip radiation and the spectral trend of the
voiced excitation source. Pre-emphasis refers to the compensation for this
roll-off by preprocessing the signal to give it a +6dB/octave boost in the
appropriate spectral range.
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Preemphasize

Pre-emphasizes the
signal using a first
order filter with a
transfer function H(z) =
1-az'.

void RLwPreemphasize(short int * vect , float a, int n, int
doScaleOutput , int * scaleFactor ),
/* 16-bit integer vectors */

void RLsPreemphasize(float * vect , float a, int ny;
/* single precision; real vectors */
vect The input vector that needs pre-emphasis.

a The coefficient used for the first order transfer
function. Usually a value of 0.95 is chosen for
speech signals.

n The length of the input vectoect/n]
doScaleOutput Refer to ‘Integer Scalingin Chapter 1.
scaleFactor

Discussion

The functionRLb?Preemphasize()  pre-emphasizes the input signal
contained in the vectaect/n] . The resulting values are stored back into
the same vector. A high-pass filtering for pre-emphasis is implemented by
the difference equation:

y(n)=x( n- a*x( n-1)

wherex andy are the input and output respectively.

In z-transform notation, the transform function can be written as:
H(z) = Y(2)IX(z) = 1 - az*

Usually a value of 0.95 is used for the valueof
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FreePreemphasizeTbls

Frees all internal
memory allocated by the
RLb?Preemphasize
functions.

void RLFreePreemphasizeTbls (void);

Discussion

The functionRLFreePreemphasizeThls() frees all internal memory that
was allocated brLb?Preemphasize  functions.
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Cepstral Analysis

Cepstral analysis (also known as cepstral truncation) is a technique for
removing the pitch ripple from the high resolution speech spectra. Voiced
speech can be modeled as the convolution of the vocal tract response with
the excitation source. Let n) represent the voiced speech sighah)
represent the vocal tract response, @ng represent the excitation signal.
Thenx( n) can be written as follows:

x(n) = p(n) * h(n)

where * " is the convolution operator.

NOTE. Note that this equation does not take lip radiation effects into
account.

The goal of cepstral analysis for speech feature extraction is to obtain the
vocal tract response after removing the pitch ripple. One straightforward
way of doing this is to filter the log-magnitude (or log-energy) of the

signal with an inverse FFT. This is followed by truncation of the
coefficients beyond the pitch frequency and then a forward FFT.
However, a more common variation is cepstral smoothing using a Discrete
Cosine Transform (DCT) with the coefficients placed on a mel-scale. In
this library, the Mel-frequency Cepstral Coefficients (MFCC) are
implemented using the DCT of filter-banked FFT spectra.
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CepstralMFCC

Compute mel-scaled
cepstral coefficients by
cepstral smoothing with
a DCT (Discrete Cosine
Transform) on
triangular bandpass
filter bank outputs.

void RLwCepstralMFCC(BOOL doFft , shortint* vect ,
wMelFilters_t * filters  , shortint * ceps, int nceps , int
doScaleOutput ,int* scaleFactor );

[* 16-bit integer vectors */

void RLsCepstralMFCC(BOOL doFft , float * vect
sMelFilters_t* filters , float * ceps, int nceps);
/* single precision; real vectors */

doFft A boolean. Ifirue , an FFT followed by a log-
magnitude operation is performed on the input
vector. Iffalse , itis assumed that the input
vector is the log-magnitude (or log-power-
spectrum) of the FFT of some signal and at least
n/2 + 1 (wheren is the size of the FFT) elements
are expected in the input vector.

vect The input vector.

filters Pointer to theeMelFilters_t data structure
(created by a call teL?MFCCInit() ) containing
the filter specifications.

ceps The output vector in which the extracted MFCC
cepstral coefficients will be stored.

nceps The number of cepstral MFCC cepstral
coefficients to be extracted.
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doScaleOutput Refer to ‘Integer Scalingin Chapter 1.
scaleFactor
Discussion

The functionRL?CepstralMFCC() computes the Mel-Frequency Cepstral
Coefficients (MFCC). An FFT of the input signal is taken and the
logarithm (base 10) of its magnitude is then filtered by a filter bank of mel-
spaced triangular bandpass filters. The filters are equally spaced on a mel-
scale defined by:

Mel( f) = 2595log (1 + f/700)
wheref is the frequency on the linear scale.

The MFCC, using a Discrete Cosine Transform (DCT) of the filter outputs,
are then computed as

MFCC= X, X cos(i(k - 0.5) 20), i=1,2,.M, k = 1,..K

wherex is the log-energy output of theh filter, M= nceps andk = the
number of bandpass filters.
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MFCClInit

Creates and initializes
the data structure
containing the
triangular band pass
filter specifications and

weights
wMelFilters_t *RLwMFCClnit(int order , int nBandPass , int
startFreq , int endFreq , int samplingFreq , BOOL
doLinearlnitially ,int nLinearFilters ,int

maxLinearFreq );
/* 16-bit integer vectors */

sMelFilters_t *RLsMFCClInit(int order , int nBandPass , int
startFreq , int endFreq , int samplingFreq , BOOL
doLinearlnitially , int nLinearFilters , int

maxLinearFreq );
/* single precision; real vectors */

order The order (expressed as a power of 2) of the
input vector (and also the order of the FFT) that
will be passed to the function
RLsCepstralMFCC()

nBandPass The number of triangular bandpass filters to be
created.

startFreq The start frequency of the first band pass filter.

endFreq The end frequency of the last band pass filter.

samplingFreq The sampling frequency of the input (speech

signal) vector that will be passed to the function
RLsCepstralMFCC() along with the filter data
structure.
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doLinearinitially A boolean If true , the function creates the first
few band pass filters uniformly placed on a linear
scale If false , all filters are uniformly placed
on a mel scale.

nLinearFilters The number of filters to be placed on a linear
scale if argumendoLinearlnitially iStrue .
maxLinearFreq The end frequency of the last linearly placed
filter if argumentdoLinearinitially istrue .
Discussion

The functionRL?MFCCInit() is called once to construct and initialize the
data structureMelFilters_t . The?MelFilters_t structure is required
to extract the MFCC cepstral coefficients by calls to the function
RL?CepstralMFCC() . A filter bank ofnBandPass mel-spaced triangular
bandpass filters is created. The filters are equally spaced on a mel-scale
(starting from the frequencyartFreqg  and ending at the frequency
endFreq ) defined by:

Mel( f)=2595log (1+ f/700)
wheref is the frequency on the linear scale.

WhendoLinearinitially istrue , the firstnLinearFilters are placed
uniformly on a linear frequency scale starting fremntFreq  and ending
atmaxLinearFreq . All of the other filters are placed uniformly on a mel-
scale.

The ?MelFilters_t data structure contains precomputed weights and
data corresponding to the filter/FFT-coefficient combinations, thus
reducing the computational load of the functiareCepstralMFCC()

The function returns a pointer to thielFilters_t structure.
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FreeMFCCFilters

Destroys and reclaims
the storage associated
with the filters data

structure.
void RLwFreeMFCCFilters(wMelFilters_t * filters );
/* 16-bit integer vectors */
void RLsFreeMFCCFilters(sMelFilters_t * filters ),
/* single precision; real vectors */
filters A pointer to the data structueelelFilters_t
Discussion

The functionRL?FreeMFCCFilters() is called to destroy and reclaim the
storage space associated with the data struetusiilters_t
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Example 4-3hows the code for extracting the MFCC coefficients from a
single input signal frame.

Example 4-3 Extraction of MFCC from a single input signal frame

[* Compute the MFCC from a 128-point signal using 20 bandpass
* filters in the frequency range 0 to 8Khz. Ten filters are

* placed linearly up to a frequency of 1Khz and the remaining

* filters are placed on a mel-scale. The sampling frequency of

* the input signal is 16Khz.

*/

float x[128]; /I imput signal

float x[10]; /I the MFCC coefficients
sMelFilters_t *filters; /I the filters structure

[* Insert code here to put the 128 samples in x */

/* first initialize the filters */
filters = RLsMFCCInit(7, 20, 0, 8000, 16000, TRUE, 10, 1000);

/* Now extract 10 MFCC coefficients using the filter structure.
RLsCepstralMFCC(TRUE, x, filters, ceps, 10);

[* Delete the filters structure to reclaim memory */
RLsFreeMFCCFilters(filters);
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The functions described in this chapter compute similarity measures and
probability density functions. Sometimes these basic functions comprise
an entire recognition system, but more often they are components of a
larger recognition system. The similarity measures include dot products
and Euclidean distances. Gaussian mixtures and multi-layer perceptrons
are non-linear functions of these similarity measures which are used to
estimate probability density functions (pdfs). One particular type of
probability density which is used commonly with hidden Markov models
in speech recognition is referred to as an observation likelihood.

Similarity Measures
This section describes the functions in the Intel Recognition Primitives

Library which compute similarity measures (also known as distance
metrics).
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DotP

Computes the dot
product (inner product)
of two vectors.

int RLwDot P(short int *vectl, short int *vect2, int n,
i nt doScal eCut put, int *scal eFactor);
/* 16-bit integer vectors */

doubl e RLsDot P(float *vectl, float *vect2, int n);
/* single precision; real vectors */

vect 1, vect 2 The vectors for which the dot product is
computed.

n The length of the two vectorsvect 1[ n] and
vect 2[ n] .

doScal eCut put , Refer to “ Integer Scaling” in Chapter 1.

scal eFact or

Discussion

The function RL?Dot P() returnsthe dot product of the two vectors
vect 1[ n] andvect 2[ n] . The dot product is defined as:

DotP = S (vectl * vect2)

where the summation is carried out over each component of the vectors.
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LINorm

Computes the L1INorm
(city-block or
Manhattan Distance)
between two vectors.

int RLwL1Nornm(short int *vectl, short int *vect2, int n,
i nt doScal eCut put, int *scal eFactor);
/* 16-bit integer vectors */

doubl e RLsL1Norn(float *vectl, float *vect2, int n);
/* single precision; real vectors */

vect1l, vect?2 The vectors for which the L1Nor mis computed.

n The length of the two vectorsvect 1[ n] and
vect 2[ n] .

doScal eCut put , Refer to “ Integer Scaling” in Chapter 1.

scal eFact or

Discussion

The function RL?L1Nor () returnsthe L1Nor m(city-block distance)
between the two vectorsvect 1[ n] andvect 2[ n]. The L1Nor mis
defined as:

LINorm = S abs(vectl - vect2)

where the summation is carried out over each component of the vectors.
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L2Norm

Computes the L2Norm
(Euclidean distance)
between two vectors.

int RLwL2Norm(short int *vectl, short int *vect2, int n,
Bool doSquareRoot, int doScal eCutput, int *scal eFactor);
/* 16-bit integer vectors */

doubl e RLsL2Norn(fl oat *vectl, float *vect2, int n, Bool
doSquar eRoot ) ;
/* single precision real vectors */

vect1l, vect?2 The two vectors for which the L2Nor mis
computed.

n The length of the vectorsvect 1[ n] and
vect 2[ n] .

doSquar eRoot A boolean. If t r ue, the square root of the sumis

of squaresis calculated and returned.
doScal eCut put , Refer to “ Integer Scaling” in Chapter 1.

scal eFact or

Discussion

The function RL?L2Nor () returns the L2Nor m(Euclidean distance)
between the two vectorsvect 1[ n] andvect 2[ n]. The L2Nor mis
defined as:

L2Norm = sqrt (S (vectl - vect2)?)

where the summation is carried out over each component of the vectors.
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Mahalanobis

Computes the
Mahalanobis distance
(covariance weighted
distance) between two
vectors.

i nt RLwivahal anobi s(short int *vectl, short int *vect2,
short int **inverseCovarianceMatri x, int n, Bool
doSquar eRoot, int doScal eQutput, int *scal eFactor);

/* 16-bit integer vectors; full covariance matrix */

i nt RLwivahal anobi sD(short int *vectl, short int *vect2,
short int *reciprocal Variance, int n, Bool doSquareRoot,
i nt doScal eCut put, int *scal eFactor);
/* 16-bit integer vectors; diagonal covariance matrix
(uses a vector) */

doubl e RLsMahal anobi s(float *vectl, float *vect2, float
**inverseCovarianceMatrix, int n, Bool doSquareRoot,);
/* Single precision real vectors, full covariance
matri x */

doubl e RLsMahal anobi sD(fl oat *vectl1, float *vect2, float
*reci procal Vari ance, int n, Bool doSquareRoot,);
/* Single precision real vectors, diagonal covariance
matrix (uses a vector) */

vect 1, vect 2 The two vectors for which the
Mahalanobis distance is computed.

i nver seCovari anceMatri x The inverted covariance matrix for the
domain of the vectorsvect 1[ n] and
vect 2[ n] .

reci procal Vari ance A vector representing the reciprocals of
the leading diagonal of the covariance
matrix of the domain of the vectors
vect 1[ n] andvect 2[ n].
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n The length of the two vectorsvect 1[ n]
andvect 2[ n] . Thematrix Cov[ n, n] is
asquare matrix of sizen * n and
dCov[ n] isavector of length n.

doSquar eRoot Tell the function to take square root of
the sum squares if true.

doScal eCQut put, scal eFact or Refer to “Integer Scaling” in Chapter 1.

Discussion

The function RL?Mahal anobi s?() returnsthe Mahalanobis (covariance
weighted distance) between the two vectorsvect 1[ n] and vect 2[ n] .

The Mahalanobis distance is defined as:
Mahal anobi sDi st = sqrt(S S (vectl - vect2) *
i nverseCovarianceMatrix; * (vectl - vect2))

where the summation is carried out over each component of the vectors.

When a diagonal covariance matrix is used, the Mahalanobis distance can
be defined as:

Mahal anobi sDi st = sqrt(S (vectl, - vect2)?” *
reci procal Vari ance,)

where the summation is carried out over each component of the vectors.
The vector r eci procal Vari ance[ n] now represents the reciprocals of
the leading diagonal of the covariance matrix.
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Observation Likelihood Estimates

This section describes functions that compute observation likelihood
estimates. Multi-layer perceptron (MLP) evaluation and Gaussian
mixtures are supported.

Gaussian Mixtures

Gaussian mixtures are implemented in the framework of a server model.
The application initially sets up a Gaussian mixture server by calling the
function RL?I ni t GaussM xSer ver (). The application should then pass
all of the relevant information for setting up the mixtures to

RL?I ni t GaussM xSer ver () . Subsequently, for each input vector, the
mixture is evaluated by calling the function RL?Eval GaussM x(). This
scheme eliminates the overhead of passing al the required arguments
whenever a mixture needs to be evaluated. The following sections
describe the mathematics involved in the computation of the Gaussian
mixtures.
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InitGaussMixServer

Initializes a Gaussian
mixture server.

wGaussM xServer _t
*wei ght Vect,
***| nver seCov,

RLW ni t GaussM xSer ver (short int
int **nmeanVect, short int
short int **inverseCovD, int n, int

nGauss, BOOL useExpTabl e, int distScale);

/* 16-bit

sGaussM xServer _t
*wei ght Vect,
**i nver seCovD,

i nteger vectors */

RLsI ni t GaussM xSer ver (f 1 oat
**nmeanVect, float ***inverseCov, float
n, int nGauss, BOOL useExpTabl e);

/* Single precision; floating point vectors */

wei ght Vect

meanVect

i nver seCov

i nver seCovD

5-8

The vector (of length nGauss) defining the
weight applied to each Gaussian.

A table containing nGauss rows where each row
is the mean vector for the corresponding
Gaussian. Implemented as a vector (length
nGauss) of pointers, one for each mean vector.
Each component of the mean vector contains the
mean for that element position of the vector.

A vector of tables, one for each inverse (full)
covariance matrix. The vector of tablesis
implemented as a vector (of length nGauss) of
pointers, one for each inverse covariance matrix
corresponding to each Gaussian. Each inverse
covariance matrix isimplemented as atable.
Either i nver seCov ori nver seCovD should be
NULL.

A table containing nGauss rows where each row
isthe leading diagonal of the inverse covariance
matrix for the corresponding Gaussian.
Implemented as a vector (Ilength nGauss) of
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pointers, one for each vector. Either
i nverseCov orinverseCovD should be NULL.

n The length of the mean vector. Each matrix in
i nver seCov isasquare matrix of sizen * n and
each vector ini nver seCovDis of length n.

nGauss The number of Gaussians in the mixture.

useExpTabl e A boolean. If t rue, lookup tables are used to
approximate the exponential. If f al se, the
exponential is computed accurately using the
math library. The approximate exponential is
computed as

exp(x) = exp(i) * exp(f)

wherei istheintegral part of x and f isthe
fractional part of x rounded to the third decimal
place. Lookup tables are used for exp(i) and
exp(f).

While using the lookup table option improves
overall performance, it should be used with
caution because of the loss of precision (resulting
from the rounding of the fractional part to the
third decimal place).

di st Scal e Scaling factor (expressed as a power of 2) that is
used to normalize the covariance weighted
distance for each Gaussian. The distanceis
multiplied by 2***** before being exponentiated.
Thisisdone for the integer version of the
function because the mean and covariances
might have been scaled up when represented as
integers. A negative value should be used for
normalization. However, a positive value will
also work and will result in scaling up the
computed distance. Useavalue of 0if no
scaling isto be performed.
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Discussion

The functionRL?InitGaussMixServer?() creates a new Gaussian

mixture server and returns a pointer to a structareissMixServer

representing the server. The server architecture eliminates the need for
passing a large number of arguments when evaluating a Gaussian mixture.
Only the input vector and the server structure (obtained by calling this
function) need be passed when evaluating a Gaussian mixture with the
functionRL?EvalGaussMix() . All the arguments that were used to

initialize the mixture can be destroyed to reclaim space (if needed) because
the mixture parameters are stored in an internal format.

The Gaussian mixture computed by this library is a weighted sum of
Gaussian distributiongx) , which can be written as:

fx)= Z W=*exp((x- H)* B f(x- H))

wherew, 1, andE,, are the weighting coefficient, mean vector, and inverse

covariance matrix respectively of théh multi-dimensional Gaussian
distribution. The argumentis the multidimensional input vector.

The Gaussian mixture can be evaluated using the function
RL?EvalGaussMix()
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EvalGaussMix

Evaluates a Gaussian

mixture.

int RLwEvalGaussMix(wGaussMixServer_t * server , shortint
*vect , int n,int  doScaleOutput | int *scaleFactor );
/* 16-bit integer vector */

double RLsEvalGaussMix(sGaussMixServer_t * server , float

* yect , int n;
/* single precision; real vector */

server The pointer to the structure
?GaussMixServer_t  representing the Gaussian
mixture server. The pointer is obtained by an
initial call to RL?InitGaussMixServer

vect The input vector for which the Gaussian mixture
is evaluated.

n The length of the input vectoect/n]

doScaleOutput Refer to Integer Scalingin Chapter 1. Used

scaleFactor only by therRLwEvalGaussMix()  function.

Discussion

The functionRL?EvalGaussMix()  evaluates the Gaussian mixture
identified byserver for the input vectorect/n] . The evaluated
probability is then returned.
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FreeGaussMixServer

Destroys and releases
the storage space for
one or more Gaussian
mixture servers.

voi d RLwFreeGaussM xServer (WGaussM xServer _t server);
/* 16-bit integer vector */

voi d RLsFreeGaussM xServer (sGaussM xServer _t server);
/* single precision; real vector */

server The pointer to the structure
?GaussM xSer ver _t representing the Gaussian
mixture server. The pointer is obtained by an
initial call to RL?1 ni t GaussM xSer ver .

Discussion

The function RL?Fr eeGaussM xSer ver () destroys and releases the
storage space for the Gaussian mixture server pointed to by ser ver .
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Example 5-1 shows the code to set up and use a Gaussian Mixture server.

Example 5-1 Setting Up and Using Gaussian Mixtures

/* This code sets up a Gaussian mxture with 5 mxture
* components for inputs with 128 el enents.

*/
fl oat x[128]; /'l input vector
fl oat wei ght s[ 5] ; /] mxture weights
fl oat mean[ 5] [ 128] ; /1 mean vectors for each Gaussian
fl oat di ag[ 5] [ 128]; /1 diagonal s of inverse covariance

/'l matrices for each Gaussian

sGaussM xServer t *server; // Gaussi an n xture server struct
doubl e prob; /'l mxture probability for input x
fl oat *t _nean[ 5] ; /1l vector of pointers to mean rows
fl oat *t _diag[5]; /'l vector of pointers to diag rows
i nt i;

/* Insert code here to initialize x, weights, nmean and diag */

/* first initialize the Gaussian m xture server */
for (i=0;i<5;i++) {
t_mean[i]

&rean[i][0];
t_diag[i] &diag[i][0];
}

server = RLslnitGussM xServer(wei ghts, t_mean, NULL, t_diag,
128, 5, TRUE);

/* Now conpute the m xture probability for the input x */
prob = RLsEval GaussM x(server, x, 128);

/* Delete the server to reclaimmenory*/
RLsFreeGaussM xSer ver (server) ;
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Multi-Layer Perceptron

The function described in this section performs feed forward processing
for amulti-layer perceptron (MLP) neural network, sometimes referred to
as a back-propagation network. The MLP is used extensively in OCR
applications and is beginning to see application in speech recognition
applications. Facilities for learning are not provided as part of the
Recognition Primitives Library because learning is typically a one-time
event performed during development of the weights for an MLP.

MLPerceptron

Performs multi-layer
feed forward neural
network processing on
an input vector.

voi d RLwM_Per ceptron(int nunber O I nputs, int
i nput seExponent, short int* input, int nunberO Layers,
int* | ayerNeuronCounts, int weightsExponent, short int*
wei ghts, short int* output, int doScal eQutput, int*
scal eFactor);

/* 16-bit integer vector */

voi d RLsM_Perceptron(int nunmber Ol nputs, float* input,
i nt number Of Layers, int* |ayerNeuronCounts, float*
wei ghts, float* output);

/* single precision; real vector */

nunmber Of | nput s Number of elementsin theinput vector.

i nput sExponent A singlei nt value which is the exponent for all
of theinputs. Thisargument is used only by the
RLWVLPer cept ron() function. The
RLWM_Per cept ron() function treats each input
as afixed point number wherethe short i nt
data passed to it corresponds to the mantissas of
theinput values. Thei nput sExponent
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i nput

nunber Of Layer s

| ayer Neur onCount s

wei ght sExponent

parameter corresponds to the common exponent
of theinput values. For example, if the desired
input values are 3.1415 and -26.454, to maintain
the best overall precision i nput sExponent
should be set to -10 and the short integers 3217
(OC91H) and -27088 (9630H) stored in the
memory pointed to by i nput .

Pointer to the input vector to be processed which
canbemadeup of short ints orfloats
depending on which of the two functionsis used.

The number of layers of neuronsin the Multi-
Layer Perceptron.

Pointer to an array of integers which contains the
number of neuronsin each layer of the network.

Thefirst value in the array corresponds to the
number of neuronsin the layer connected to the
inputs. The last value corresponds to the number
of outputs the network produces.

A singlei nt value which is the exponent for all
of theweights. This argument is used only by
the RLwML_Per cept ron() function. The
RLwWVLPer cept r on() function treats each
weight as a fixed point number where the shor t
i nt data passed to it corresponds to the
mantissas of the weight values. The

wei ght sExponent parameter corresponds to the
common exponent of the weights. For example,
if the desired weights are 3.1415 and -26.454,
to maintain the best overall precision

wei ght sExponent should be set to -10 and the
short integers 3217 (0C91H) and -27088
(9630H) stored in the memory pointed to by

i nput .

5-15



Intel Recognition Primitives Library Reference Manual

wei ght s Pointer to the weights to be used which can be
made up of short ints or floats depending on
which of the two functionsisused. The weights
are ordered in sequence from first input to last,
from first neuron to last, and from first layer to
last. Thus, thefirst nunber Of | nput s weights
will correspond to the connections between the
inputs and the first neuron in the first hidden
layer. The next number Of | nput s weights will
be the weights for the second neuron, and so on.

out put Pointer to where the output vector will be
written. The output representation for the
RLwWM_Per cept ron() function isafixed-point
representation. The outputs are shorti nt s
scaled as specified by the arguments
doScal eQut put and scal eFact or.

doScal eCut put , Refer to “ Integer Scaling” in Chapter 1. Used
scal eFact or only by the RLwivLPer cept ron() function.
Discussion

The RL?M_Per cept ron() function performs multi-layer feed forward
neural network processing on an input vector to produce a vector of
neuron outputs given a set of weights. The processing is performed for
each neuron in the specified network. The analytical expression for the
computations done by the RL?M_Per cept ron() function isasfollows:
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Figure 5-1

Multi-Layer Perceptron Architecture

Where u, is acomponent of the input vector, W isthei th weight for
neuronj and o, isthe output of thej th neuron. The outputs of one layer
of neurons are the inputs to the next layer of neurons. Thisistruefor all
layers except the output layer.

Multi-layer Perceptron Architecture
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Vector Quantization and Kohonen Network

In the process of pattern recognition it is common to map a pattern to a
lower dimension space to reduce the computation required for
classification or to improve the generalization capability of a recognition
system. Vector quantization and the Kohonen network are two techniques
commonly used.

The same computations are done for both vector quantization and a
Kohonen network. The only differenceisin how the weights or codebook
vectors are derived from a set of training patterns. Since the Recognition
Primitives Library does not support training, only one set of functionsis
provided which can be used for both vector quantization and the Kohonen
network. The Euclidean distances (L2Norms) are computed for an input
vector and a set of weight vectors. By sorting the Euclidean distances, the
closest vector to the input vector isidentified. Thisisuseful in vector
guantization for finding the codebook vector which best matches the input
vector. The closest matching vector to the input vector is also useful in
training a Kohonen network. The functions optionally provide aranked
list of the indices of the closest matching vectors.

Facilitiesfor learning are not provided as part of the Recognition
Primitives Library because learning istypically a one-time event
performed during development of the weights for a Kohonen network or
during derivation of a set of codebook vectors for vector quantization.
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VQKohonen

Calculates and ranks
the Euclidean distances
between an input vector
and an array of weight
vectors.

voi d RLwQKohonen(short int* input, int numberO |l nputs,
i nt nunmber O Qut puts, short int* weights, int
nunber ToRank, short int* rankList, int doSquareRoot,
unsi gned int* output, int doScal eCutput, int*
scal eFactor);
/* 16-bit integer vector */

voi d RLsVQKohonen(float* input, int nunber Ol nputs, int
nunber Of Qut puts, float* weights, int nunber ToRank, short
int* rankList, int doSquareRoot, float* output);

/* single precision; real vector */

i nput Pointer to the input vector to be processed.
nunber Of | nput s Number of elementsin theinput vector.
nunmber Of Qut put s Number of outputs or weight vectors for which

distances are to be calcul ated.

wei ght s Pointer to the weight matrix to be used. The
weights are ordered in sequence: first by input
and second by output or weight vector.

nunber ToRank The number of smallest distances to be ranked.
Zero indicates that no sorting should be done.
Note that the larger this number is, the more
computetimeisrequired. If nunber ToRank is
set to zero, no memory needs to be allocated for
rankLi st .
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rankLi st Pointer to alist of i nt eger indices, indicating
which nunber ToRank of the weight vectors are
closest to the input vector. Theindex of the
weight vector with the smallest distance appears
first. For sorting, memory alocation for afull
nunmber Of Qut put s integers must be provided.

doSquar eRoot Tells the function to take the square root of the
sum of the differences. Theresult isthat
Euclidean distances are calculated rather than the
squares of the Euclidean distances. Substantial
compute time can be saved by not calculating the
square root without impacting the ability to
classify. Setting doSquar eRoot =0 will
eliminate the taking of sguare roots. Setting
doSquar eRoot =1 corresponds to the calculation
of standard Euclidean distances.

out put Pointer to where the output vector of Euclidean
distances should be written. It isassumed that
enough memory has been allocated by the user.
If doSquar eRoot =1 the vector pointed to will
consist of Euclidean distances. The outputs are
short i nt s scaled as specified by the arguments
doScal eQut put and scal eFact or.

doScal eQut put Tells the function how to scale the output to fit
into the output datatype. If theinputs utilize the
full range of short i nt s and no squareroot is
taken, the outputs will exceed the largest value
that ani nt can store. This option flag can be set
to zero to reduce compute time if the user knows
that the output will alwaysfit withinani nt . If
turned off, an overflow will occur and no
warning will be given.
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scal eFact or Pointer to ani nt scale factor which indicates the
power of two the output should be multiplied by
to recover the actua distances or distances
squared. For example, if the integer value
pointed to is 3 then the outputs should be
multiplied by 2°.

Discussion

The function RL?VQKohonen() computes a vector of distances, o, and
storesit in the memory location pointed to by out put . It also sortsthe
distances and returns alist of ranked indices in order from smallest to
largest in the memory location pointed to by r ankLi st .

The Euclidean distance computed by the RL?VQKohonen() function can
be described as follows:

where u, isthei th component of the input vector, i nput [ n] , and W, isthe
i th component of the j th weight vector. The array of weight vectorsis
pointed to by wei ght s.
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|mage Processing

The algorithms described in this chapter are image processing routines
used in optical character recognition (OCR). The functions supported are:
Bit manipulation
I mage rotation
Mirror image reflection
Image copying
Mask convolution

Pixel Arithmetic and Logical Operations

The functions described in the chapter “Vector Operations” can be used to
manipulate pixel datain images. These functionsimplement logical and
arithmetic operations on bit, nibble, and byte vectors.

Image Geometric Transformations

Functions described in this section perform transformations such as
rotation on the image, mirror image reflection, and image copying.
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Rotatelmage

Rotates an image by a
specified angle.

voi d RLbRot at el mage(const unsi gned char **inage, unsigned
char **outlnmage, int angle, int nlnRows, int nlnCols, int
nCut Rows, int nQut Col s)

/* binary images */

voi d RLnRot at el mage(const unsi gned char **inage, unsigned
char **outlnmage, int angle, int nlnRows, int nlnCols, int
nCut Rows, int nQut Col s)

/* 4-bit nibble inages */

voi d RLyRot at el mage(const unsi gned char **inage, unsigned
char **outlnmage, int angle, int nlnRows, int nlnCols, int
nCut Rows, int nQut Col s)

/* unsigned byte inmages */

voi d RLt Rot at el mage(const signed char **inmage, signed
char **outlnmage, int angle, int nlnRows, int nlnCols, int
nCut Rows, int nQut Col s)
/* signed byte imges */
i mage, out | mage The input image and output images respectively.
Animageisimplemented as a pointer to a vector
of pointersto vectors (one for each row of

pixels).

angl e The angle by which the image should be rotated.
The angle should be -90, 90, or 180 degrees.

nl nRows, nl nCol s The number of rows and columnsin the input
image.

nQut Rows, nQut Col s The number of rows and columns in the output
image.
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Discussion

The function RL?Rot at el mage() rotatestheinput imagei nage by

angl e degrees using the center of theinput image as apivot. The
resulting rotated image is stored in out | mage. Thisfunction could also be
used (by specifying angl e = 90) for converting a row-based image (that
is, where the rows are stored as arrays) to a column-based image (that is,
where the columns are stored as arrays). Horizontal pixel scans are faster
on row-based images and vertical pixel scans are faster on column-based
images.

Example 6-1 shows the code for rotating a binary image by 90 degrees.

Example 6-1 Using RLbRotatelmage() to Rotate a Binary Image

/* Rotate a 64 by 128 binary inmage by 90 degrees */

unsi gned char x[ 64] [ 16]; /1 input inmage uses 16 bytes

/'l per image row for 128 pixels
unsi gned char y[128][8]; /] output inmage uses 8 bytes

/'l per image row for 64 pixels
unsi gned char *tx[64]; /'l vector of pointers to x rows
unsi gned char *ty[128]; /'l vector of pointers toy rows

/* Insert code here for creating the imges */

for (i =0; 1 < 64; i++)
tx[i] = &[i][O0];
for (i = 0; i < 128; i++)

ty[i]l = &[i][0];

/* Rotate the 64 by 128 input binary inage to produce the
* 128 by 64 output binary inmage
*/

RLbRot at el mage(tx, ty, 90, 64, 128, 128, 64);
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Mirrorimage

Mirror reflects an image
relative to a horizontal
or vertical line.

void RLbM rrorl mage(const unsigned char **inage, unsigned
char **outlnmage, int nlnRows, int nlnCols, int orient);
/* binary imges */

void RLnM rrorl mage(const unsigned char **inage, unsigned
char **outlnmage, int nlnRows, int nlnCols, int orient);
/* 4-bit nibble inages */

void RLyM rrorlmage(const unsigned char **inage, unsigned
char **outlnmage, int nlnRows, int nlnCols, int orient);
/* unsigned byte images */

void RLt M rrorlmage(const signed char **inmage, signed
char **outlnmage, int nlnRows, int nlnCols, int orient);
/* signed byte imges */

i mage The data structures for the input image. An
image is implemented as a pointer to a vector of
pointers to vectors (one for each row of pixels).

out | mage The data structures for the output image. An
image is implemented as a pointer to a vector of
pointers to vectors (one for each row of pixels).

nl nRows The number of rows in the input image.
nl nCol s The number of columnsin the input image.
orient Indicates whether to reflect an image vertical or

horizontal. The following values are allowed:
RL_ORI ENT_HOR Reflect horizontal
RL_ORI ENT_VER Reflect vertical
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Discussion

The function RL?M rror | mage() mirror reflects an image relative to a
horizontal or vertical line.
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Copylmage

Copiesanimageor a
part of an imageto
another image.

voi d RLbCopyl mage(const unsigned char **inage, unsigned
char **outlnmage, rect *copyRgn, int orgRow, int orgCol);
/* binary images */
voi d RLnCopyl mage(const unsi gned char **inage, unsigned
char **outl nmage, rect *copyRgn, int orgRow, int orgCol);
/* 4-bit nibble inages */
voi d RLyCopyl mage(const unsigned char **inage, unsigned
char **outl nmage, rect *copyRgn, int orgRow, int orgCol);
/* unsigned byte images */
voi d RLt Copyl mage(const signed char **image, signed char
**out | mage, rect *copyRgn, int orgRow, int orgCol);
/* signed byte imges */

i mge The data structures for the input image. An
image is implemented as a pointer to a vector of
pointers to vectors (one for each row of pixels).

out | mage The data structures for the output image. An
image is implemented as a pointer to a vector of
pointers to vectors (one for each row of pixels).

copyRgn Specifies the rectangular region to be copied.

or gRow, or gCol Indicates the left upper vertex of the output
image.

Discussion

The function RL?Copy| mage() copies an image or a part of an image to
another image.
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Mask Convolution

Thisis one of the most important image processing primitives and a
variety of image processing functions can be implemented with this
capability (for example, edge detection, blurring, noise removal, feature
detection, and so on). A sguare or rectangular mask can be used. For a
mask of size mby n (assuming mand n are odd) with pixelsc,,, anew pixel
output value o, (output image sizeisx by y) is computed for pixelsi  in
the input image (size x by y) as

@]
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wherei =0,1,..,xandj =0,1,..yandq=i +k-floor(m2) and
r=j+I1 -floor(n/2).
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MaskConvolve

Convolves a mask with
animage.

voi d RLMaskConvol ve(const char **inmage, const char
**mask, char **outlmage, int imageDataType, int
maskDat at ype, int outDataType, int nlmageRows, int
nl mageCol s, int nMaskRows, int nMaskCols, rect
*convol veRegi on, int doScale, int *scal eFactor)

i mage, mask, The data structures for the input image, mask,

out | mage and output images respectively. Animage (or
mask) is implemented as a pointer to a vector of
pointers to vectors (one for each row of pixels).
Although each vector is declared to be an array
of bytes (char), the actual interpretation of the
bytesis determined from the value of the
argument ?Dat aType described below.

i mageDat aType, The data types of the input image, mask, and
maskDat aType, output images respectively. The following
out Dat aType predefined constants are used to indicate the
types which are allowed for the input and output
images:
BIT Binary image (that is, single bit
pixels). 8 pixels per byte.
UNI BBLE Unsigned 4-bit pixels. Two
pixels per byte.
UBYTE Unsigned 8-bit byte pixels.
SBYTE Signed 8-bit byte pixels.

The following types are allowed for the mask:
SBYTE Signed 8-bit byte pixels.
SWORD Signed 16-bit word pixels.
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nl mageRows,
nl mageCol s

nivaskRows,
nMaskCol s

convovl eRegi on

doScal eQut put ,
scal eFact or

Discussion

The number of rows and columnsin
the images.

The number of rows and columnsin
the mask.

Specifies the rectangular region over which the
convolution is to be performed. Thetype
declaration for r ect is

typedef struct _rect {

int |eftTopRow, int |eftTopCol;
int rightBotRow, rightBotCol;} rect;

Refer to “ Integer Scaling” in Chapter 1.
However, in this case, the option
RL_AUTO_SCALE isnot allowed.

The function RLMaskConvol ve() convolvesthe mask nask with the input
image i mage over the region defined by convol veRegi on and creates the
output image out | mage which contains the result of the convolution. All
of the other arguments listed above describe the data structures and types
of the input image, output image, and mask.

Example 6-2 shows how mask convolution can be used to implement a
simple image blurring operation. Each pixel in the output is set to the
average of itsimmediate eight neighbours.
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Example 6-2 Blurring an Image Using Mask Convolution

/* Blur an inmage using a sinple mask containing all ones except
* the centre pixel.
*/

char  x[32]

[32]; /1 1Input 32 by 32 8-bit signed pixel inmage
char y[32][32]
31[3

/] Qutput 32 by 32 8-bit signed pixel inmage
/1 3 by 3 mask, 8-bit signed pixels

char mask[ 1;
{0, 0, 31, 31}; // convolve entire inage

rect regi on
i nt i, s
i nt *scal eFact or;

unsi gned char *ti[32]; // vector of pointers to input inage rows
unsi gned char *to[32]; // vector of pointers to output inmage rows

unsi gned char *tnf3]; /1l vector of pointers to mask rows

/* insert code here for creating the input image */

for (i =0; 1 < 32; i++)
tifi] = &[i][O];

for (i =0; 1 < 32; i++)
to[i] = &[i][O];

for (i =0; 1 < 3; i++4)
tnfi] = &mask[i][0];

/* Initialize the mask */
for (i =0; 1 < 3; i++4)
for (j =05 j <3; j+4)
mask[i][j] = 1;
mask[1][1] = 0; // set the centre pixel to O

/* Performthe convolution. Use a scal eFactor of 3 so
that each output pixel is divided by 8. Effectively
each out put pixel is conputed as the sumof its eight
nei ghbours divided by 8.

/

LI I I

*scal eFactor = 3;
RLMaskConvol ve(ti, tm to, SBYTE, SBYTE, SBYTE, 32, 32,
3, 3, region, RL_FIXED SCALE, scal eFactor);
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This chapter describes two Dynamic Programming techniques: Dynamic
Time Warping (DTW) and Hidden Markov Models (HMM). These are
pattern matching techniques, which are used when the natural data has a
dimension in which the data is distorted. For example, this dimension
includes time for continuous speech and the left-to-right direction for
cursive handwriting.

Dynamic Time Warping

Dynamic Time Warping is a technique for elastically matching a sequence
of observations to a reference pattern (template). The observation and
reference features are laid out in sequence alongdhey axes

respectively of a grid. For each point in the grid, the distance (according to
some distance metric) between corresponding features in the observation
and reference pattern features is computed. This distance is then added to
the minimum distance found in one of a specified set of precursor grid
points.

The optimum alignment between an observation sequence and a reference
pattern is represented by a path throughthlices of the reference
pattern to the indices of the observation sequence, of the form

m=w(n), that minimizes the accumulated distance.

The diagram below shows one possible alignment path between the
observation sequence and reference patterns.
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7-2

Figure 7-1 An Alignment Path Between an Observation Sequence and

Reference Patterns

NR
Reference
Pattern
Features
2i

. ] Observation

L 2 Pattern NO
Features

0SD2097

The DTW can be fully specified by
¢ Endpoint constraints

* Local constraints

e The distance metric

These are described below.

Endpoint Constraints

The simplest endpoint constraint is of the form

« wl)=1and

«  WNQ=NR

(wherenoandNRare the last points of the observation and reference

patterns) that is, perfect alignment of the endpoints. This is called
constrained endpoints, 2-to-1 slope range_(CE21).

A second variant callednconstrained endpoints 2-to-1 slope range
(RL_UEZ2]) slightly relaxes the endpoint constraints to the set

l<=w(1) <= 140

NR & <=W(NQ <= NR
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Local Constraints

Local constraints describe the possible types of motion like directions,
slopes, and so on. One constraint that is always assumed for speech is that
the time index can only increase monotonically. Under this condition the
minimum accumulated distantén, n) from the initial pointh = 1,m=1

to the grid point 4, m) can be computed recursively as

D(n, m) = d(0, R,) + min[D(n-1, q)l, g<=m

whereQ, andr, are thenth observation andih reference pattern features
respectively and is a set ofnvalues such that a path exists betweeh, (

q) and @, n).

One type of local constraint is known as the Itakura local constraint. This
constraint dictates that three or more consecutive points in the path cannot
be flat (that is, horizontal). The Itakura local constraint can be expressed
as:

w(n) - w(n-1) =0,1,2 ifm(n-1) # w(n-2)
=1,2 ifw(n-1) =w(n-2) otherwise

Effectively, due to this constraint, three or more consecutive points in the
path cannot be flat (that is, horizontal). With this constraint, the
accumulated distance can be written in a simpler form recursively as

D(n,m) =d(0, R) + min [D(n-1, mg(n-1, m, D(n-1, n+1), D(n-1, m+2)]
where
g(n-1,m=1 if W(n-1) # w(n-2)

=a (infinity)  if w(n-1) =w(n-2) otherwise
The final desired solution (that iS(Ng NR, the minimum accumulated
distance over the entire path) is computed iteratively using the above
equation.

Distance Metrics

The supportedidtance metrics areitg-block and Euclidean.
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EvalDTW

Computes the minimum
distance between an
observation sequence
and a set of reference
(or template) sequences
(patterns) using the
Dynamic Time Warping
algorithm.

int RLwEvalDTW(int * idPattern , int nPattern , short int

** 0Seq, int nSeq, int len , int oFactor , int flags ,int

thrsh , int thrshFactor , int delta ,int* dist ,int
doScale , int scaleFactor );
/* 16-bit integer vectors */

int RLsEvalDTW(int idPattern , int nPattern , float **

int nSeq , int len , int flags , double thrsh , int delta

double * dist );
/* single precision; real vectors */

idPattern The vector of pattern IDs of the reference
patterns (templates) that the observation
sequence will be matched to. Each pattern is
created by a call to the function
RL?Patternini()

nPattern The number of reference patterns to evaluate.
This is the length of the/Pattern  vector.

0Seq A pointer to a vector of pointers (corresponding
to the observation sequence) to vectors. Each
vector corresponds to one point or feature in the

sequence.
nSeq The length of the observation sequence.
len The length of each observation or reference

feature vector.



Dynamic Programming

oFactor

flags

thrsh

thrshFactor

delta

Theint scale factor. This is the power of two by
which theoSeq should be multiplied to recover
the actual values of sequence elements.

An ORed bit mask of options for the DTW. These
options are predefined and can be logicalied

to turn on the appropriate options. The following
is a list of available:

Endpoint Constraint Options

RL_CE21 Constrained endpoints
2-to-1 slope range.

RL_UE21 Unconstrained endpoints
2-to-1 slope range.

Local Constraint Options

RL_ITAKURA Itakura local constraint. This is
the only local constraint
currently supported.

Distance Metric Options

RL_LINORM City-block distance metric.
RL_L2NORM Euclidean distance metric.
Threshold Option

RL_TRHESHOLD Option for abandoning the
match when accumulated distance is more than
thethrsh value.

The distance threshold value for abandoning
matches. This value should be used only when
theRL_THRESHOLMDption is specified.

The power of two by which thersh should be
multiplied to recover the actualrsh value.

The delta value to be used only when the
endpoint constraint is specified Rs_UE21.

7-5



Intel Recognition Primitives Library Reference Manual

dist Pointer to where the accumulated distances
between the observation sequence and the
nPattern corresponding patterns should be
saved. It is assumed that enough memory has
been allocated by the user.

doScale Indicates how theist vector should be scaled.
Refer to ‘Integer Scalingin Chapter 1.

scaletFactor The pointer to amt scale factor for theist
vector.

Discussion

The functionrRL?EvalDTW() evaluates the minimum distance

(corresponding to the best elastic match) between the observation and
reference patternsSeq andidpattern ~ respectively using the dynamic
programming DTW algorithm. The index of the reference pattern in the
idPattern ~ vector with the minimum distance to the observation sequence
is returned. The distances to all of the reference patterns are returned in the
vectordist . The reference patterns can be created by calling the function
RL?Patternini()
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Patternini

Creates and initializes a
reference pattern for use
in the DTW algorithm.

int RLwPatternini(short int ** pSeq, int  nSeq , int len ,
int  pFactor );
[* 16-bit integer vectors */

int RLsPatternIni(float ** pSeq, int nSeq, int len );
[* single precision; real vectors */

pSeq A vector of pointers (corresponding to the
pattern sequence) to vectors. Each vector
corresponds to one point (or feature) in the

sequence.

nSeq The length of the pattern sequence.

len The length of each feature vector.

pFactor Theint scale factor which is the power of two

by which thepSeqg should be multiplied to

recover the actual values of sequence elements.

Discussion

The functionrL?Patternini() createsand initializes a reference pattern
(that is, template) for use when calling the?EvalDTW() function. The
ID of the newly created pattern is returned.
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PatternFree

Destroys and frees the
memory of reference
patterns.

void RLwPatternFree(int idPattern );
[* 16-bit integer vectors */

void RLsPatternFree(int idPattern ),
[* single precision; real vectors */

void RLwPatternFreeAll();
[* 16-bit integer vectors */

void RLsPatternFreeAll();
[* single precision; real vectors */

idPattern The ID of the corresponding pattern to be
destroyed.

Discussion

The functionRL?PatternFree()  destroys and frees the memory
associated with a reference pattern. The functicrPatternFreeAll()
destroys all existing reference patterns.

Example 7-1shows the code to evaluate the minimum distance between
the observation sequence and reference patterns.
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Example 7-1 Using DTW Evaluation

[* Evaluate the minimum distance between the observation sequence
and reference patterns */

int  nPttrn = 3; /* number of patterns to evaluate */
int  *idPttrn; /* id's patterns vector */

int  bestPttrn; /* the best pattern index */

double *dist; /* vector for accumulated distances
saving */

int flags = RL_CE21|RL_ITAKURA|RL_L1NORM,; /* flags for DTW
evaluation */

float a[32][8], b[30][8], c[34][8], d[30][8]; /* patterns sequences
and observation sequence*/

float *t_a[32], *t_b[30], *t_c[34], *t_d[30]; /* vectors of pointers
to sequences "points" */
int i

[* Insert code here to initialize the sequences */

/* Allocate memory for pattern manipulation */
idPttrn = (int*)malloc(nPttrn*sizeof(int));
dist = (double*)malloc(nPttrn*sizeof(double));

[* linitialize the vectors of pointers to sequences "points" */
for(i=0;i<32;i++) t_al[i] = &ali][0];
for(i=0;i<30;i++) t_bli] = &bI[i][0];
for(i=0;i<34;i++) t_c[i] = &c[i][O];
for(i=0;i<30;i++) t_d[i] = &d[i][0];

[* Patterns initialization */

idPttrn[0] = RLsPatternlni(t_a, 32, 8);
idPttrn[1] = RLsPatternlIni(t_b, 30, 8);
idPttrn[2] = RLsPatternlni(t_c, 34, 8);

/* DTW evaluation */
bestPttrn = RLsEvalDTW(idPttrn, nPttrn, t_d, 30, 8, flags,
(float)0.0, 0, dist);

[* Delete the patterns to reclaim memory */
RLsPatternFreeAll();
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Hidden Markov Models

HMMs are used to model data that have statistical properties that vary with
time. Speech is the most common data type modeled by HMMs. In
speech recognition, features such as Cepstral coefficients are extracted
from frames of speech to reduce the dimension of the speech signal. A
sequence of feature vectors, also referred to as observafftrisD..T),

are and then classified into linguistic components such as words,
subwords, or phonemes. A sequence of such components is referred to as
an utterance. An HMM can be characterized by its probability of
producing such a given sequence of observations. The functions in this
section provide for the rapid evaluation of these HMM probabilities given
a set of previously derived HMMs and a sequence of observations.

A Markov model consists of states numberegd= 1,2,...N. Transitions
can occur from one state to another.

Three types of HMMs can be defined based on the type of transitions that
are allowed between states:

» Ergodic or “fully connected” HMMsAny state of the HMMcan be
reached (in a single step) from any other state.

Left-right or “Bakis” model. As time increases the state index increases
(or stays the same); that is, the state transitions pracdgfrom left

to right.

Constrained jump model. Transitions can occur from gtédestate ,

j+1 orj +2. SeeFigure 7-1

This library supports all three of the models in the preceding list.
Figure 7-1. Constrained Jump HMM with Four States

AW,
TS

7-10
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An HMM is fully specified by the parameter et B, T3 where:

* Ais the matrix &} where a is the probability of transition from state
i to state .

* Bisthe vector §,(Q)} whereb, (Q) is theobservation likelihood of
observationq when in state .

+ Tis the vector {{} whereTt is the probability of starting in state

A complete description of the notation used here and how it relates to the
parameters used in the library functions is showhainle 7-1

HMMs can be further classified into three types based on how the
observation likelihoods, (Q) are modeled. These types are:

* Discrete HMMs: In discrete HMMSs, the observation veciois
gquantized. See the VQKohonen function in this library. The index, k,
of a reference vector that most closely matches the observation vector
is determined. The index is then used to look up a corresponding
valueb,, whichrepresents thebservation likelihood, (Q).[3] See
Figure 7.2

* Semi-Continuous HMMs: Here the(Q) values are obtained as the
output of a continuous conditional Gaussian mixture probability
density function given an observation vectay), (as input. The
Gaussian components are not associated with the state or HMM and
can be computed once for the given continuous acoustic observation
vector. The Gaussian componepksl are common to all the HMMs in
the system. While the mixture weights, \&fe specific to each state of
each HMM[4]. Seé-igure 7-3

* Continuous HMMs: Each, (Q) here requires the computation of a
continuousGaussian mixture probability density function This type of
HMM is therefore the most computation intensive because there is one
Gaussian mixture per state per HMM. $egure 7-4

All three types of HMMs are supported by this library.

The key computational tasks that make up a recognition system are the
following::

* Feature Extraction

* Training

* Recognition

7-11
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These computational components are described in the following section.

Feature Extraction

Feature extraction provides a vector of smaller dimension than the original
data, which contains only the essential information for the task at hand.
The Cepstral MFCC function in the library extracts the most commonly
used speech features from a vector of speech audio samples. Feature
extraction is performed periodically oniae window of audio samples.

A vector of speech acoustic features is referred to as an observation vector,
and is typically extracted once every 10 milliseconds from a 20

millisecond window of the speech audio signal, which is sampled at 8 to

16 kHz. Feature extraction from the speech signal corresponding to an
utterance produces a sequence of continuous observation vg¢tors

1,2...7). For the discrete HMM (described earlier), these continuous
observation vectors are vector quantized using a codebook containing a set
of reference vectors, (k = 1,2...k). The codebook index, is used to

look up likelihoodsp,, for each state of the HMM.

Training

The training task consists of estimating the probabilities3, 13

(described in the preceding section) given a training set of known
utterances. The training of HMMs is a complex issue with many tradeoffs,
and as a result cannot be easily supported by a general purpose library.
The user must do the training prior to using the library.

Recognition

The recognition task uses the observation likelihapgg) and the
transition probabilities; to calculate the probability that each HMM
produced the utterance. The Forward algorithm [1] estimates the
probability for all possible paths through an HMM while the Viterbi
algorithm, which is faster, estimates only the probability of the best path
through an HMM. The word recognized is the word associated with the
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HMM that produced the highest probability. Both algorithms use dynamic
programming but perform different calculations at each point within the
lattice.

The Forward algorithm uses both “multiply” and “add” operations while
the Viterbi algorithm uses only the “add” operation. The Viterbi algorithm
is the preferred method to estimate HMM probabilities because it avoids
costly multiply operations. In this library, the Viterbi algorithm is
supported through the functien.?EvalHMMViterbi()

HMM Implementation and Class Concept

The HMM implementation follows a server model, where a server is
initialized for each HMM using an initialization function,
RL?InitHMMServer() . When many HMM-servers are involved, which is
typical for recognition tasks, all HMM-servers can be separated into
classes. However, these need not be disjoint classes; that is, more than one
class can contain the same HMM-server. This feature is useful when
linguistic processing is used to determine the next set of HMMs to
evaluate; the next set is represented by a class, which contains HMM-
servers of the same type (discrete, semi-continuous, or continuous). The
functionsRLCreateHMMClass() , RLFreeHMMClass() ,

RLAddHMMToClass() , RLRemoveHMMFromClass() , and

RLHMMFreeAll() support the creation, deletion, and management of
classes.

You can pass a single HMM or an entire class of HMMs to
RL?EvalHMMViterbi() for evaluation.

Three different schemédsr recognition using the Recognition Primitives
Library functionsarepresented ifrigures 7-27-3, and7-4. Table 7-1
describes the notational conventions used in the figutigsires 7-5and
7-6 illustrate the data structures used in the semi-continuous and
continuous HMMs.

For the discrete HMMasegach codeword of the codebook is an
observation vector (a center of corresponding acoustic space region).
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For the semi-continuous HMM case, each codeword is used as the mean
vector of a simple Gaussian probability density function. Gaussian
mixture servers for these pdfs must be initialized before the initialization
of any semi-continuous HMM server and must not be freed while the

HMM servers are in use.

For the continuous HMM case, a codebook is not used. A Gaussian
mixture probability density function is defined for each state of every
HMM. Gaussian mixture servers for all states of a continuous HMM server
must be initialized before the initialization of the HMM server and must

not be freed while it is in use.

Table 7-1. Notation Conventions for Figures 7-2, 7-3, and 7-4

Number of HMM States N nStates scalar

Number of Observation

symbols K nSymbols | scalar

Number of Dimensions in D nQuant scalar

Observation and Reference

Vectors

Initial Probabilities T iprob {mm, ] =1..N}
pointer to vector

Transition Probability from &;; tprob I =1..N,

statei to state j { a;, j = 1 N!
pointer to two dimensional array

Observation Sequence X ngvect {O,t =1..T}

Length of Observation T nObserv scalar

Sequence

Reference Vectors used in VQ R, lookUp {R, k=1..K}
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Probability for symbolk in by symbprob (b j =1..N )

state | k=1 K

(discrete HMM) pointer to two dimensional lookup
table

Vector of Codebook Indices | V vect {v,,t =1..T}

(discrete HMM)

CCGPDFs for symbok p.(Q) | ccgPdfs {p.. k = 1L..K}

(semi continuous HMM) pointer to a set of Gaussian Mixture
Servers

Mean Vector for the i-th H meanVect see meanVect in data structure

Gaussian diagrams

Inverse Covariance Matrix for| E; cov See cov in data structure diagrams

the i-th Gaussian

Number of Gaussians inthe | U nGauss scalar

mixture (could vary for each state j)

Observation likelihood for bj (0G,) (internal) scalar

O, in state j

Gaussian Mixture Weight W, weightVect W j =1..N )

for symbol k in state | Kk =1, K

(semi continuous HMM) see weightVect in data structure
diagrams

Gaussian Mixture Weight W, weightVect ] =1..N

for u-th Gaussian in state Wiwry 21 Ut

(continuous HMM) ) ' '. :
see weightVect in data structure
diagrams

Viterbi Probability pY pvit scalar
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Figure 7-2.  Recognition Scheme Using Discrete Servers

tprob, symbprob, nStates, nSymbols, iprob

Legend
' Data Flow @

@ Initialization HMM Server Initialization
HMMId = RLsInitHMMServer
(tprob, symbprob, iprob,

ngVect, nQuant, nSymbols, lookUp, nObserve nStates, nSymbols, flags)

vector Quantization HMM Class Initialization

RLsVQKohonen (ngVect [t], nQuant, nSymbols,
lookUp, 1, vect+t, 0, &dist)

classld=RLCreateHMMClass ()
) RLAddHMMToClass
“= argmlnki (O, R )? (classld, HMMId)

‘ vect {} HMMOrClassld

Viterbi Evaluation

pvit = RLsEvalHMMViterbi (HMMOTrClassld, Vect, nObserv, *bestHMMId)
Viterbi probability is the minimum probability for all HMMs in the class and has value

log (P¥) = min, {log ¢, (j)}, where
log(es (j)) =~ log , - log b; (O,
log ¢,,; () = min,{log ¢, (/) - log a;} - log b; (O,,, ),
b; (O.) = lookup table by (v;)
and the best HMM number is argmin; {log ¢, ()}

¥

pvit, bestHMMId

OMO05397
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Recognition Scheme Using Semi-Continuous HMM Servers

meanVect, cov, nQuant, nSymbols

Legend @

- DataFlow Continuous Pdfs Initialization

@ Initialization ccgPdfs[k] = RLsInitGaussMixServer
(&factor, meanVect+k, NULL,

cov+k, nQuant, 1, FALSE)

{} ccgPdfs

HMM Server Initialization

tprob, weightVect, iprob, nStates HMMId = RLsInitSemiContHMMServer
nSymbols, nQuant, flags (tprob, weightVect, iprob, ccgPdfs,

nStates, nSymbols, nQuant, flags)

{} HMMId

HMM Class Initialization

classld=RLCreateHMMClass ()
RLAddHMMToClass
nObserv, ngVect (classld, HMMId)

‘ {} HMMOrClassld

Viterbi Evaluation

pvit = RLsEvalSemicontHMMViterbi (HMMOrClassld, nqVect, nObserv, *bestHMMId)
Viterbi probability is a minimum for all HMMs from the class of the value

log (P¥) = min, {log ¢, (j)}, where
log(e (/) =-log m; - log b; (Oy).
log ¢,,,(j) = min, {log ¢, (/) - log a;} - log b; (O,,; ),
P(O,) =det (E)v2 /(21902 *exp{-(O- W, JE(O, - ) / 2}
b;(0,) = % Wi P(O,)

and the best HMM number is argmin; {log ¢+(j)}

.l

pvit, bestHMMId
OM05398

7-17



Intel Recognition Primitives Library Reference Manual

Recognition Scheme Using Continuous HMM Servers

nStates, nQuant, meanVect,
cov, nGauss, weightVect

Figure 7-4.

(7

Legend
P DataFlow Observation Pdfs Initialization
@ Initialization outPdfs[j] = RLsInitGaussMixServer
(weightVect[j], meanVect(j], NULL,
cov[j], nQuant, nGauss][j], FALSE)

outPdfs

(]

HMM Server Initialization
tprob, iprob, nStates, HMMId = RLsInitContHMMServer
nQuant, flags (tprob, iprob, outPdfs,
nStates, nQuant, flags)

HMMId

(-

HMM Class Initialization

classld=RLCreateHMMClass ()
RLAddHMMToClass
(classld, HMMId)

nObserv, ngVect

Viterbi Evaluation

pvit = RLsEvalcontHMMViterbi (HMMOTrClassld, ngVect, nObserv, *bestHMMId)
Viterbi probability is a minimum for all HMMs from the class of the value

HMMOrClassld

(-

log (PY) = min; {log ¢,(j)}, where
log(e: (/) =- log m; - log b, (Oy).
log ¢,,,(j) = min,{log ¢, (/) - log a;} - log b; (O,,,),
b (0,) = 2 W, *exp{-(O:- W.)" *E;y*(Or W) / 2}

and the best HMM number is argmin; {log ¢; ()}

et

pvit, bestHMMId

OMO05399
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Figure 7-5. Data Structures Used in Semi-Continuous HMMs

Variable

weightVect

cov

meanVect

outPdfs

Data Structure

matrix

Covariance

Gauss Mix

Server

Input/Output

Input to
RL?InitGaussMix
Server()

Input to
RL?InitGaussMix
Server()

Input to
RL?InitGaussMix
Server()

Input to
RL?InitContHMM
Server()

J

om05393

7-19



Intel Recognition Primitives Library Reference Manual

Figure 7-6.  Data Structures Used in Continuous HMMs

Variable Data Structure Input/Output
K
<>
) Input to
weightvect W, RL?initSemiCont
N HMMServer()
A G Mi
~ [ auss Mix Output from
ccgpdfs 9, Server RL?InitGaussMix
| 5 ?
K k4| Server()
\4
A > |
“"| Mean Vector
> Tk Input to
meanvect K <5 > RL?InitGaussMix
y Server()
> )
7| Covariance
. D Input to
cov matrix - .
K Ek RL?InitGaussMix
<> Server()
D
Legend:
:I% pointer
data structure
om05394
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IntHMMServer

Creates and initializes
an HMM server.

int RLwInitHMMServer(short ** tprob , short ** symbProb ,
short* iprob , int nStates , int nSymbols , int flags);
/* discrete HMM for 16-bit integer vectors */

int RLsInitHMMServer(float ** tprob , float ** symbProb ,
float * iprob , int nStates |, int nSymbols , int flags);
/* discrete HMM for single precision; real vectors */

int RLwInitSemicontHMMServer(short ** tprob , short
** WeightVect , short* iprob , wGaussMixServer_t ** ccgPdfs ,
int nStates , int nSymbols, int nQuant, int flags ,int
scaleFactor ),

/* semi-continuous HMM for 16-bit integer vectors */

int RLsInitSemicontHMMServer(float ** tprob , float
** wieghtVect , float* iprob , sGaussMixServer_t ** ccgPdfs |
int nStates , int nSymbols, int nQuant , int flags );

[* semi-continuous HMM for single precision; real

vectors */
int RLwInitContHMMServer(short ** tprob , short * iprob ,
wGaussMixServer_t ** outPdfs |, int nStates, int nQuant, int

flags ,int scaleFactor );
/* continuous HMM for 16-bit integer vectors */

int RLsInitContHMMServer(float ** tprob , float * iprob ,
sGaussMixServer_t ** outPdfs |, int nStates , int nQuant , int
flags );

/* continuous HMM for single precision; real vectors*/

tprob Pointer to a vector of pointers to the rows of the
transition probability matrix. Rows and columns
bothcorrespond to states. Each value within the
matrix represents the probability of transition
from the state associated with its row to the state
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symbProb

weightVect

iprob

ccgPdfs

associated with its column. The structure of the
HMM (constrained jump, Bakis or ergodic) is
defined by the values of the transition
probabilities.

symbProb is a pointer to a vector of pointers to
the rows of the observation symbol probability
matrix used in discrete HMMs. Row vectors
correspond to states. The number of columns is
equal to the number of symbols. Each value in
the matrix corresponds to the probability of
emitting the associated symbol while in the state
associated with its row.

weightVect is a pointer to a vector of pointers

to the rows of a weight matrix. The number of
columns is equal to the number of nSymbols.
The values are not logarithmic even if the
RL_HMM_LOGARITHMIdlag is setFor the short
integer form, RLwInitSemiContHMMServer

the weightVect matrix elements are assumed
to be in fixed-point notation where the short
ineteger value passed is to be multiplied by" 2
before being used. Thlabservation likelihood

for state is the dot product of theth row of
weightVect — and the vector ofontinuous
conditional Gaussian pdfs. This data structure is
used only by semi-continuous HMMs.

Pointer to the initial probability vector of length
nStates .

Pointer to a Gaussian mixture server pointer
vector of lengtmSymbols . This vector of

pointers specifies the Gaussian Mixture servers
that provide the continuous conditional Gaussian
pdfs to the semi-continuous HMM evaluation
function.
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scaleFactor

outPdfs

nStates

nSymbols

nQuant

flags

scaleFactor is not currently used.

Pointer to a Gaussian mixture server pointer
vector of lengtimsStates . This vector of pointers
specifies the Gaussian mixture servers that
provide observation likelihoods to the
continuous HMM evaluation function.

Number of states in the HMM.

Number of discrete symbols used in the discrete
HMM. Symbols refers to the number of unique
codebook entries to which the observations are
quantized. For semi-continuous HMMs,
nSymbols represents the number of ccgpdfs
used.

Dimension of quantization space. The dimension
of the observation vectors, the reference vectors
used in VQ, and the mean vectors of the
Gaussians used in the semi-continuous and
continuous models..

RL_HMM_LOGARITHMIC

Currently the only flag supported for
InitHMMServer , which indicates thaymprob ,
weightVect , andiprob  are logarithmic. The
values for these parameters should be negative
log probabilities. The logarithm (base 10) of the
probability (in the range 0 to 1) should be taken
and the sign changed to positive. For short
integers, the numbers might need to be scaled to
fit them in the 16-bit range and to prevent
overflow. The same scaling factor should be used
for tprob , symbProb , andiprob values.

Currently, logarithmic data is the only type
supported so this flag must be used.
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Discussion

The functionRL2InitHMMServer()

RL?InitSemicontHMMServer() andRL?InitContHMMServer() , Create
and initialize an HMM by passingll of the required arguments to it. The
function then returns an ID for the newly created HMM or -1 if an error
occured. This ID can then be used when calling the functions
RL?EvalHMMViterbi(), RL?EvalSemiContHMMViterbi(), and
RL?EvalContHMMViterbi() to evaluate an HMM or a group of HMMs.
SeeFigures 7-27-3, and7-4.
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FreeHMMServer

Deletes and frees the
storage associated with
an HMM server.

void RLFreeHMMServer(int HMMId);

HMMId The ID of the HMM server to delete.

Discussion

The functionRLFreeHMMServer() destroys and frees the storage space
for the HMM server corresponding tovivid The HMM server also is
removed from all the HMM classes. The value returned is 1 if the function
ended successfully and -1 otherwise. An error status is set if the HMM
server does not exist. (Seerfor Functionsin Chapter 2.)



Dynamic Programming

EvalHMMViterbi

Evaluates a set of
HMMsfor a given
observation sequence
using the Viterbi

Algorithm.

int RLwEvalHMMViterbi(int HMMOrClassld , int * vect , int

nObserv, int

*bestHMMId, int doScale, int *scaleFactor );

/* discrete HMM for short integer vectors */

float RLsEvalHMMViterbi(int HMMOrClassld , int * vect , int

nObserv, int

*bestHMMId ),

/* discrete HMM for single precision real vectors */

int RLwEvalSemicontHMMViterbi(int HMMOrClassld , short

*nqV ect , int

int  *bestHMMId, int doScale, int

*scaleFactor
/* semi-continuous HMM for short integer vectors */
float RLsEvalSemicontHMMViterbi(int HMMOrClassld , float
*nqV ect , int int  *bestHMMId );
/* semi-continuous HMM for single precision real
vectors */
int RLwEvalContHMMViterbi(int HMMOrClassld , short
*nqV ect , int nObserv, int *bestHMMId, int doScale, int
*scaleFactor

/* continuous HMM for short integer vectors */

float RLsEvalContHMMViterbi(int HMMOrClassld , float

*nqV ect , int

nObserv,

int  *bestHMMId );

/* continuous HMM for single precision real vectors */

HMMOrClassld

The ID of the HMM server or HMM class that is

to be usedwhich iscreated originally by a call

to RL?Init?HMMServer() or

RLCreateHMMClass() . If HMMOrClassid is

less then zero, ID is considered to be a class ID, if
greater then zero, it is considered to be the ID of
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vect

nqgVect

nObserv

bestHMMId

doScaleOutput
scaleFactor

Discussion

an HMM server. All HMM servers from class
must be initialized with same values of
nSymbols andnQuant parameters.

A vector of codebook indices corresponding to
the sequence of codebook vectors, which most
closely match the sequence of observations. The
dimension ofvect is nObserv .

The observation sequence non-quantized vector
of lengthnobserv . Each element ofigvect is

a pointer to an observation vector of length
nQuant . .

The number of symbols in the observation
sequence.

The ID of the HMM with the best (minimum)
computed score. The minimum negative log
probability score corresponds to the maximum
probability score. This argument is useful only
when the ID of a class is passed to the function in
the argumentMMORClassiD. The value of
bestHMMId is returned by the function.

Refer to fnteger Scalinyyin Chapter 1.

The functionRL?EvalHMMViterbi() evaluates a single HMM or a group
of HMMs (that is, Class) for the given observation veetar using the
Viterbi algorithm. IfHMMOrClassid is positive, it is considered to be an
HMM server ID, and only one model is evaluatedd\MfMOrClassid is
negative, it is considered to be an HMM class ID, and a set of models are
evaluated. The value returned is the best score (or probability in the log

domain).
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The Viterbialgorithmused for recognition computes the probability (that
is, the likelihood) that the most likely state sequence in the HMM produces
the observation sequencg(:r = 1,2...T).

P =max_, { @} = Viterbi Probability
where(,is computed using the recursive pair
Q. =max, { @*a}* b(qQ,) ¢t =12.7-1
and@,(j) =75 * b,(0)

In this implementation, negative log probabilities are used, so the above
equations reduce to :

log (P) = -min_, {log (@)}

where@is computed using the recursive pair

log ((pt+1) = minj:l,N{log ((pt) - log (aij)} - log (bj(Q+1))1 t=12.7-1
and

log (@,(/)) =-log (1) - log (b,(Q)

Note that in this equation, for a discrete HMMQ) = b, is the

probability of producing observationwhen in stat¢ and the

observation] is vector quantized to reference pattgrror a semi-
continuous or continuous HMM thg(Oy) for all stateg at time: are
computed by Gaussian mixture probability evaluation. See figures 7.3 and
7.4 respectively. The quantity is the transition probability going from

state to statg andTtis the initial probability of state.

7-29



Intel Recognition Primitives Library Reference Manual

CreateHMMClass

Creates an HMM class
(a collection of HMM
servers).

int RLCreateHMMClass();

Discussion

The functionRLCreateHMMClass() creates and returns the ID of a new
HMM class. If an error occurs -1 is returned. An HMM class is a collection
of HMM servers that can be passed as a group to the

RL?EvalHMMViterbi() function. HMM servers can be added to a class
using the functiomLAddHMMToClass() and removed from a class using

the functionRLRemoveHMMFromClass() . An HMM class contains HMM
servers obne type (discrete, semi-continuous or continuous). Class type is
defined with the addition of the first HMM server.
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FreeHMMClass

Deletes and frees the
storage associated with
an HMM class.

int RLFreeHMMClass(int classld);
classld The ID of the HMM class to delete.

Discussion

The functionrRLFreeHMMClass() deletes and frees the storage associated
with an HMM class. The value returned is 1 if the function ended
successfully and -1 otherwise. An error status is set if the class does not
exist. (See Error Function%in Chapter 2.)
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AddHMMToClass

Adds an HMM server to

a class.

int RLAddHMMToClass(int classld, int HMMId);

classld The ID of the HMM class.

HMMId The ID of the HMM server to add to the HMM
class.

Discussion

The functionRLAddHMMToClass() adds an HMM server to a class. The
value returned is 1 if the function ends successfully (the HMM server is
added to the class or already belongs to it) and -1 otherwise. An error
status is set if the class or the HMM server does not exist or if the server is
added to class of another type. (SEerr Functionsin Chapter 2.)



Dynamic Programming

RemoveHMMFromClass

Removes an HMM
server from a class.

int RLRemoveHMMFromClass(int classld, int HMMId);

classld The ID of the HMM class.
HMMId The ID of the HMM server to remove.
Discussion

The functionRLRemoveHMMFromClass() removes an HMM server from a
class. The value returned is 1 if the function ends successfully (the HMM
server is removed from the class or does not belong to it) and -1 otherwise.
An error status is set if the class or the HMM server does not exist. (See
“Error Function%in Chapter 2.)
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HMMFreeAll

Clean-up function to
free storage space and
delete all HMM servers
and classes.

void RLHMMFreeAll();

Discussion

RLHMMFreeAll() deletes all of the current HMM servers and classes. The
function also frees the storage associated with them.
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This chapter includes functions for data conversion, complex vector
support and processor type detection.

Data Conversion

The data conversion functions convert scalar or vector data of one typeto
another data type. When datais converted from a higher-precision
representation to lower-precision representation it is referred to as “ scaling
down.” When converting from alower-precision representation to a
higher-precision representation it is referred to as “scaling up.” Functions
are also provided to convert complex datatypesto real datatypes.

Scaling Down

The following functions convert scalars or vectors from a higher-precision
representation to a lower-precision representation. The scaling options
(described in Chapter 1) determine how the datais scaled.
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ConvertDown

Scales down a scalar
from one data type to

another.

short int RLswConvertDown(float value, int doScale, int
*scal eFactor) ;
/* float-to-short */

short int RLdwConvert Down(doubl e value, int doScale, int
*scal eFactor) ;
/* doubl e-to-short */

| ong RLsi ConvertDown(fl oat val ue, int doScale, int
*scal eFactor) ;
/* float-to-long */

| ong RLdi Convert Down(doubl e value, int doScal e, int
*scal eFactor) ;
/* doubl e-to-1ong */

val ue The data value to be converted.
doScal e, Refer to “ Integer Scaling” in Chapter 1.

scal eFact or

Discussion

The function RLxy Conver t Down( ) scales down avalue of type x to a
value of typey using the scaling options provided. The converted valueis
returned.
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Example 8-1 show the code to transform different input values with
various scaling options.

Example 8-1 Using the Function RLswConvertDown()

/* This exanple shows the use of the function RLswConvertDown() in
* transform ng different input valu
* options.*/

#i ncl ude <stdio.h>
#include “rl _cnvrt.h”

mai n() {
fl oat
fl oat
fl oat
fl oat
fl oat
short int
out Val ue6;
i nt

scal eFact or

out Val uel

scal eFact or

out Val ue2

scal eFact or

out Val ue3
out Val ue4
out Val ueb

out Val ue6

/* insert

valuel = (float)-3.5;
value2 = (float)6.7;

val ue3 = (float)32770.0
value4 = (float)O0.2;

val ue5 = (float)-32777.

out Val uel, outValue2, o
scal eFactor;

0;

RLswConvert Down(val uel

= 2;
RLswConvert Down(val ue2

= -2;
RLswConvert Down(val ue2

RLswConvert Down(val ue3
RLswConvert Down(val ue4
RLswConvert Down(val ueb

code here to print */

}

Cut put

Scaling: RL_NO SCALE scal eFactor =
invVal uel(float) = -3.5 outValue

es with various scaling

3;
ut Val ue3, out Val ue4, out Val ueb,

, RL_NO _SCALE, &scal eFactor);

, RL_FI XED_SCALE, &scal eFactor);

, RL_FI XED_SCALE, &scal eFactor);
, RL_AUTO _SCALE, &scal eFactor);

, RL_AUTO _SCALE, &scal eFactor);

, RL_SATURATE, &scal eFactor);

0
1(short int) = -3
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Scaling: RL_FI XED SCALE scal eFactor = 2
i nvVal ue2(float) = 6.7 outValue2(short int)

Scaling: RL_FI XED SCALE scal eFactor = -2
i nval ue2(float) = 6.7 outValue3(short int)

Scaling: RL_AUTO SCALE scal eFactor =1
i nVal ue3(float) = 32770.0 outVal ue4(short

Scaling: RL_AUTO SCALE scal eFactor = -17
invVal ue4(float) = 0.2 outValue5(short int)

Scal i ng: RL_SATURATE scal eFactor = 0
i nvVal ue5(float) = -32777.3 out Val ue6(short

=1
= 26
int) = 16385

= 26214

int) = -32768
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bConvertDown

Scales down a vector
from one data type to

another.

voi d RLswbhConvertDown(fl oat *inVect, short int *outVect,
int n, int doScale, int *scal eFactor);
/* float-to-short */

voi d RLdwbConvert Down(doubl e *inVect, short int *outVect,
int n, int doScale, int *scal eFactor);
/* doubl e-to-short */

voi d RLsi bConvertDown(float *inVect, |ong *outVect, int
n, int doScale, int *scal eFactor);
/* float-to-long */

voi d RLdi bConvert Down(doubl e *inVect, |ong *outVect, int
n, int doScale, int *scal eFactor);
/ *doubl e-to-1ong */

i nVect Pointer to the input vector to be converted.
out Vect Pointer to the scaled down output vector.

n Length of theinput (and output) vector.
doScal e, Refer to “ Integer Scaling” in Chapter 1.

scal eFact or

Discussion

The function RLxybConver t Down( ) scales down avector of type x to a
vector of typey using the scaling options doScal e and scal eFact or .
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Example 8-2 show the code to transform different input vectors with
various scaling options.

Example 8-2 Using the Function RLdwbConvertDown()

/* This exanple shows the use of

the function RLdwbConvertDown() in

* transform ng different input vectors with various scaling

* options. */

#i ncl ude <stdio.h>
#include “rl _cnvrt.h”

mai n() {
doubl e inVect[5] = {-3.5, 32768.0, 0.2, 65000.0, 9.0};
short int outVectl[5], outVect?2[5];
i nt n =5, scal eFactor, i;
RLdwbConvert Down(i nVect, outVectl, n, RL_AUTO _SCALE,
&scal eFact or) ;
RLdwbConvert Down(i nVect, outVect2, n, RL_SATURATE, &scal eFactor);
/* insert code here to print */
}
Cut put

inVect: -3.5 32768.0 0.2 65000.0 9.
Scaling: RL_AUTO SCALE scal eFact or

outVectl: -1 16384 0 32500 4

Scaling: RL_SATURATE scal eFactor = 0
outVect2: -3 32767 0 32768 9
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Scaling Up

The following functions convert scalars or vectors from alower-precision
representation to a higher-precision representation.

ConvertUp

Scalesup ascalar from
one data typeto
another.

fl oat RLwsConvert Up(short value, int scal eFactor);
/* short-to-float */

doubl e RLwdConvertUp(short value, int scal eFactor);
/* short-to-double */

float RLisConvertUp(long value, int scal eFactor);
/* long-to-float */

doubl e RLi dConvertUp(l ong value, int scal eFactor);
/* 1 ong-to-double */

val ue The data value to be converted.

scal eFact or A scale factor used in scaling up the data. The
datais multiplied by 2 during conversion.
Discussion

The function RLxyConver t Up( ) scales up avalue of type x to avalue of
typey using thescal eFact or argument. The converted value is returned.
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Example 8-3 show the code to transform an input value with various
scaling options.

Example 8-3 Using the Function RLwsConvertUp()

/* This exanple shows the use of

the function RLwsConvertUp() in

* transform ng an input value with various scaling options. */

#i ncl ude <stdio.h>
#include “rl_cnvrt.h”

mai n() {
short int
fl oat
i nt
out Val uel =
out Val ue2 =

/* insert
}
Cut put

scal eFactor =

i nVal ue(short int)

scal eFactor =

i nVal ue(short int)

inVal ue = -3;
out Val uel, out Val ue2;
scal eFactor = -2;

RLwsConvert Up(inVal ue, scal eFactor);

RLwsConvert Up(i nVal ue, 1);

code here to print */

-2

1
1
w

out Val uel(fl oat)
1

1
1
w

out Val ue2(fl oat)

-12.0




Miscellaneous Functions

bConvertUp

Scales up a vector from
one data typeto
another.

voi d RLwsbConvertUp(short *inVect, float *outVect, int n,
int scal eFactor);
/* short-to-float */

voi d RLwdbConvert Up(short *inVect, double *outVect, int
n, int scal eFactor);
/* short-to-double */

voi d RLi sbConvertUp(long *inVect, float *outVect, int n,
int scal eFactor);
/* long-to-float */

voi d RLi dbConvertUp(l ong *inVect, double *outVect, int n,
int scal eFactor);
/* 1 ong-to-double */

i nVect Pointer to the input vector to be converted.
out Vect Pointer to the scaled-up output vector.

n Length of theinput (and output) vector.

scal eFact or A scale factor used in scaling up the data. The

datais multiplied by 2 during conversion.

Discussion

The function RLxybConvert Up() scales up avector of type x to avector
of typey usingthescal eFact or argument.
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Example 8-4 show the code to transform an input value with various

scaling options.

Example 8-4 Using the Function RLwsbConvertUp()

/* This exanple shows the use of the function RLwsbConvert Up()
* in transform ng an input vector with various scaling options.*/

#i ncl ude <stdio.h>
#include “rl_cnvrt.h”

mai n() {
short int inVect[5] = {0, 2, -9, 13, -20};
fl oat out Vect 1[ 5], out Vect 2[ 5] ;
i nt n =5, scaleFactor = -1, i;

RLwsbConvert Up(i nVect, outVectl, n, scal eFactor);

RLwsbConvert Up(i nVect, outVect2, n, 4);

/* insert code here to print */

}
Cut put
inVect: 0 2 -9 13 -20

scal eFactor = -1
out Vect1: 0.000000 4.000000 -18.000000

scal eFactor = 4

26. 000000

out Vect2: 0.000000 0.125000 -0.562500 0.812500

-40. 000000

-1. 250000
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Complex Vector Support

The following functions convert complex vectors to real vectors.

bConvert

Converts a complex

vector to a real vector.

void RLcsbConvert(SCplx * inVect , float * outVect , int n,
int flags );
/* float complex-to-float */
void RLvwbConvert(WCplx * inVect , short * outVect ,int n,
int flags doScale ,int* scaleFactor );
/* short complex-to-short */
inVect Pointer to the input complex vector to be
converted.
outVect Pointer to the output vector. Since the output is
no longer complex, its length is half the input,
that is,n/2. The data in the vector is contiguous.
n Length of the input vector.
flags Option that determines how the output is

computed. These flags can ®eed when used

(for exampleRL_MAG | RL_LOG10. However
RL_MAGANdRL_SQMAE&annot be used together.
If you specifyRL_LOG10with RL_MAGCor
RL_SQMAgthe logarithm is taken as the final
operation (resulting in log magnitude or log
squared magnitude). The supported options are:

RL_MAG Magnitude output

RL_SQMAG Squared magnitude (this is also
known as the power spectrum).
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RL_LOGL0 Logarithm (thisislog base 10)
doScal e, scal eFact or Refer to “Integer Scaling” in Chapter 1.

Discussion

The function RLxybConver t () converts acomplex vector of typex toa
real vector of typey using thef | ags argument. The output, being redl, is
half the size of the complex input.

Processor Information

Table 8-1

This section describes a function that can be used to query for the
processor family (for example, 486, Pentium, and so on). The function
uses a structure Pr ocessor | nf o to return the information. This structure
is defined as follows:

typedef struct {
int famly;
i nt nodel;
i nt stepping;
char nane[ 100] ;
} Processorl nfo;

Thef ani | y field assumes the following values for each processor family:

Family Field Values and Descriptions

Value Description Processor Name
-1 An error occured in the query function.

0 8086/88 processor i086™/i088™

2 80286 processor i286™

3 80386 processor i386

4 80486 processor 486

5 Pentium processor Pentium

55 Pentium processor with MMX™ technology P55C

6 Pentium Pro processor Pentium Pro
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GetProcessorinfo

Returns information
about the X86
Processor.

voi d RLGet Processor | nfo(Processorinfo *info);

info A pointer to a structure of type Pr ocessor | nf o
that will contain al the details of the processor.
This structure is described above.

Discussion

The function RLGet Processor | nf o() getsinformation about the
processor that the application is currently running on. Currently,
information about the X86 family that the processor belongstois returned
in the structure pointed to by i nf o.
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Library Information

This section describes a function that can be used to query the version
number of the current version of the Recognition Primitives Library. The
function uses a structure Li br ar y1 nf o to return the information. This
structure is defined as follows:

typedef struct {

int major;
int mnor;
int build;

} Librarylnfo;

The maj or, m nor, and bui | d fields are the major, minor, and build
numbers respectively of the current version of the library. For example if
the library revision is 2.0 build 27, then the fields in this structure are set
as

major = 2, mnor =0, build = 27

Thesefields are set to -1 in case there is an error in retrieving the
information.

GetLibrarylnfo

Returns information
about the current
version of the
Recognition Primitives

voi d RLGet Li braryl nfo(Librarylnfo *info);

info A pointer to a structure of type Li braryl nfo
that will contain all the details about the version
of thelibrary. This structure is described earlier.
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Discussion

The function RLGet Li braryl nf o() getsinformation concerning the
version number of the Recognition Primitives Library that the application
is currently using. Currently, the major, minor, and build numbers of the
library are returned in the structure pointed to by i nf o.
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B

bAbs, 3-27
bAbs2, 3-28
bAdd2, 3-9
bAdd2s, 3-11
bAdd3, 3-13
bAnd2, 3-36
bAnd2s, 3-38
bAnd3, 3-40
bConvert, 8-11

bConvertDown, 8-5

bConvertUp, 8-9
bCopy, 3-1
bMpy2, 3-21
bMpy2s, 3-23
bMpy3, 3-25
bNot, 3-52
bOr2, 3-47
bOr2s, 3-49
bOr3, 3-50
bSet, 3-3
bShiftL, 3-29
bShiftR, 3-30
bSub2, 3-15
bSub2s, 3-17
bSub3, 3-19

bXor2, 3-42
bXor2s, 3-44
bXor3, 3-45
bZero, 3-4

C

CcsFft, 4-18

CcsFftNip, 4-20
Cepstral analysis, 4-26
Cepstral truncation. See Cepstral analysis
Cepstra MFCC, 4-27
Character codes, 1-3
Conventions
Datatype, 1-3
Function name, 1-5
Notational, 1-2
Copylmage, 6-6

D

Data conversion

defined, 8-1

Data conversion functions, 8-1-8-12
bConvert, 8-11
bConvertDown, 8-5
bConvertUp, 8-9
ScalarConvertDown, 8-2
ScalarConvertUp, 8-7
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Data types, 1-2 CcsFftNip, 4-20
distance metrics. See Similarity measure Fft, 4-10
DotP, 5-2 FftNip, 4-12
Dynamic Time Warp functions, 7-1-7-10 FreeFftThls, 4-7, 4-22, 4-25
Dynamic Time Warping functions Real Fft, 4-14
End point constraints, 7-2 Real FftNip, 4-16
EvaDtw, 7-4 FreeFftThls, 4-7, 4-22, 4-25
PatternFree, 7-8 FreeGaussMixServer, 5-12
Patternini, 7-7 FreeM FCCFilters, 4-31

function name conventions, 1-5

E

End point constraints G
for Dynamic Time Warping functions, 7-2 Gaussian Mixture functions, 5-7-5-12

Error functions, 2-2—2-8 EvalGaussMix, 5-11
ErrorStr, 2-7 FreeGaussMixServer, 5-12
GetErrMode, 2-5 InitGaussMixServer, 5-8
GetStatus, 2-4 GetBit, 3-5
ReDirectError, 2-7 GetErrMode, 2-5
SetErrMode, 2-5 GetLibraryInfo, 8-14
SetStatus, 2-4 GetNibble, 3-7

Error handler, adding, 2-13-2-14 GetProcessorInfo, 8-13

Error Macros, 2-8-2-9 GetStatus, 2-4

Error status codes, 2-9-2-11

ErrorStr, 2-7 |

EvalDtw, 7-4

Eval GaussMix, 5-11 Image transformation functions, 6-1-6-6

Copylmage, 6-6
Mirrorimage, 6-4

F Rotatelmage, 6-2
Fft, 4-10 InitGaussMixServer, 5-8
FftNip, 4-12
Fourier transform functions, 4-84-21 K

CcsFft, 4-18

Kohonen network, 5-18
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L

L1INorm, 5-3

L2Norm, 5-4

Library information functions, 8-14-8-15
GetLibraryInfo, 8-14

M

Mahalanobis, 5-5

Mask Convolution, 6-7

Mask convolution functions, 6-7—6-9
MaskConvolve, 6-8

MaskConvolve, 6-8

Max, 3-35

MFCClnit, 4-29

Min, 3-34

Mirrorimage, 6-4

ML Perceptron, 5-14

Multi-Layer Perceptron functions, 5-14-5-17
ML Perceptron, 5-14

(@]
Observation Likelihood estimates, 5-7

P

PatternFree, 7-8

Patternini, 7-7

Preemphasize, 4-24

Processor information functions, 8-12—8-13
GetProcessorInfo, 8-13

R

RealFft, 4-14

Real FftNip, 4-16

ReDirectError, 2-7

Related publications, 1-1

RL ReDirectError(). See ReDirectError
RL? FreeM FCCFilters(). See FreeM FCCFilters
RL7bAbs(). See bAbs

RL7bAbS2(). See bAbs2
RL7bAdd2(). See bAdd2
RL7bAdd2s(). See bAdd2s
RL7bAdd3(). See bAdd3
RL?bANnd2(). See bAnd2
RL?bANd2s(). See bAnd2s
RL?bANnd3(). See bAnd3

RL ?bConvert(). See bConvert

RL ?bConvertDown(). See bConvertDown
RL ?bConvertUp(). See bConvertUp
RL ?bCopy(). See bCopy
RL?bMpy?2(). See bMpy2
RL?bMpy2s(). See bMpy2s
RL?bMpy3(). See bMpy3
RL?bNot(). See bNot

RL?200r2(). See bOr2

RL?2b0r2s(). See bOr2s

RL?2b0r3(). See bOr3

RL?bSet(). See bSet

RL?bShiftL(). See bShiftL
RL?bShiftR(). See bShiftR
RL7bSub2(). See bSub2
RL7bSub2s(). See bSub2s
RL7bSub3(). See bSub3
RL?bXor2(). See bXor2

Index-3



Intel Recognition Primitives Library Reference Manual

Index-4

RL?bXor2s(). See bXor2s

RL?bXor3(). See bXor3

RL?bZero(). See bZero

RL?CcsFft(). See CesFft
RL?CcsHftNip(). See CcsHtNip

RL ?Cepstra MFCC(). See CepstraMFCC
RL ?Copylmage(). See Copylmage
RL?DotP(). See DotP

RL?EvalDtw(). See EvalDtw

RL ?Eval GaussMix(). See Eval GaussMix
RL?Fft(). See Fft

RL?FftNip(). See FftNip

RL ?FreeGaussMixServer(). See
FreeGaussMixServer

RL?GetLibrarylnfo(). See GetLibrarylnfo
RL ?GetProcessorInfo(). See GetProcessorinfo

RL?InitGaussMixServer(). See
InitGaussMixServer

RL?L1Norm(). See LINorm
RL?L2Norm(). See L2Norm
RL?Mahalanobis(). See Mahalanobis
RL ?MaskConvolve(). See MaskConvolve
RL?Max(). See Max

RL?MFCCInit(). See MFCClInit
RL?Min(). See Min

RL?Mirrorimage(). See Mirrorlmage
RL?ML Perceptron(). See ML Perceptron
RL ?PatternFree(). See PatternFree

RL ?Patternini(). See Patternini

RL ?Preemphasize(). See Preemphasize
RL?Real Fft(). See Real Fft

RL?Real FftNip(). See Real FftNip

RL ?Rotatel mage(). See Rotatelmage

RL ?ScalarConvertDown(). See
ScalarConvertDown

RL ?ScalarConvertUp(). See ScalarConvertUp
RL?Sum(). See bSum

RLVQKohonen(). See VQKohonen
RL2WinBartlett(). See WinBartlett
RL2WinBlackman(). See WinBlackman
RL2WinHamming(). See WinHamming
RL2WinHann(). See WinHann

RLErrorStr(). See ErrorStr

RLFreeFftThls(). See FreeFftThls. See
FreeFftThls. See FreeFftThls

RLGetBit (). See GetBit
RLGetErrMode(). See GetErrMode
RLGetNibble (). See GetNibble
RL GetStatus(). See GetStatus
RLSetBit (). See SetBit

RL SetErrMode(). See SetErrMode
RLSetNibble (). See SetNibble

RL SetStatus(). See SetStatus
Rotatelmage, 6-2

S

ScalarConvertDown, 8-2

ScalarConvertUp, 8-7
SCplx data type
Defined, 1-4
SetBit, 3-6
SetErrMode, 2-5
SetNibble, 3-8
SetStatus, 2-4
Signal pre-emphasis, 4-23
Similarity measure, 5-1
Similarity measure functions, 5-1-5-6
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Mahalanobis, 5-5

Speech-specific processing functions, 4-23-4-
31

CepstralMFCC, 4-27

FreeMFCCFilters, 4-31

MFCClnit, 4-29

Preemphasize, 4-24
Sum, 3-32

V

Vector arithmetic functions, 3-9-3-35
bAbs, 3-27
bAbs2, 3-28
bAdd2, 3-9
bAdd2s, 3-11
bAdd3, 3-13
bMpy2, 3-21
bMpy2s, 3-23
bMpy3, 3-25
bShiftL, 3-29
bShiftR, 3-30
bSub2, 3-15
bSub2s, 3-17
bSub3, 3-19
Max, 3-35
Min, 3-34
Sum, 3-32

Vector initialization functions, 3-1-3-8
bCopy, 3-1
bSet, 3-3
bZero, 3-4
GetBit, 3-5
GetNibble, 3-7
SetBit, 3-6

SetNibble, 3-8
Vector logical functions, 3-36—3-52
bAnd2, 3-36
bAnd2s, 3-38
bAnd3, 3-40
bNot, 3-52
bOr2, 3-47
bOr2s, 3-49
bOr3, 3-50
bXor2, 3-42
bXor2s, 3-44
bXor3, 3-45
Vector quantization, 5-18
Vector quantization functions, 5-18-5-21
VQKohonen, 5-19
VQKohonen, 5-19

w

W(Cplx data type

Defined, 1-4
WinBartlett, 4-3
WinBlackman, 4-4
Windowing functions, 4-1-4-6
WinBartlett, 4-3
WinBlackman, 4-4
WinHamming, 4-5
WinHann, 4-6
WinHamming, 4-5
WinHann, 4-6

Index-5



	Intel Recognition Primitives Library
	How to Use This Online Manual
	Topics
	Chapter 1  Overview
	Manual Organization
	Related Publications
	Notational Conventions
	Data Types
	Data Type Conventions
	Table 1-1  Vector Types and Corresponding Character Codes
	Function Name Conventions
	Integer Scaling


	Chapter 2  Error Handling
	Error Functions
	Error
	GetStatus, SetStatus
	GetErrMode, SetErrMode
	ErrorStr
	RedirectError

	Error Macros
	Status Codes
	Table 2-1  RLError() Status Codes
	Error Handling Example
	Example 2-1  Error Functions
	Example 2-2  Output for the Error Function Program (RL_ErrModeParent)

	Adding Your Own Error Handler
	Example 2-3  A Simple Error Handler


	Chapter 3  Vector Operations
	Vector Initialization Functions
	bCopy
	bSet
	bZero
	GetBit
	SetBit
	GetNibble
	SetNibble

	Vector Arithmetic Functions
	bAdd2
	bAdd2s
	bAdd3
	bSub2
	bSub2s
	bSub3
	bMpy2
	bMpy2s
	bMpy3
	bAbs
	bAbs2
	bShiftL
	bShiftR
	Sum
	Min
	Max

	Vector Logical Functions
	bAnd2
	bAnd2s
	bAnd3
	bXor2
	bXor2s
	bXor3
	bOr2
	bOr2s
	bOr3
	bNot


	Chapter 4  Signal Processing
	Windowing Functions
	Table 4-1  Window Transfer Functions
	Example 4-1  Window and FFT a Single Frame of a Signal
	WinBartlett
	WinBlackman
	WinHamming
	WinHann
	FreeWinTbls

	Fast Fourier Transforms
	Format Descriptions
	Fft
	FftNip
	RealFft
	RealFftNip
	Example 4-2  Using RLsRealFft() to Perform the FFT
	CcsFft
	CcsFftNip
	FreeFftTbls


	Speech Specific Signal Processing
	Signal Pre-emphasis
	Preemphasize
	FreePreemphasizeTbls

	Cepstral Analysis
	CepstralMFCC
	MFCCInit
	FreeMFCCFilters
	Example 4-3  Extraction of MFCC From a Single Input Signal Frame



	Chapter 5  Recognition Basics
	Similarity Measures
	DotP
	L1Norm
	L2Norm
	Mahalanobis

	Observation Likelihood Estimates
	Gaussian Mixtures
	InitGaussMixServer
	EvalGaussMix
	FreeGaussMixServer
	Example 5-1  Setting Up and Using Gaussian Mixtures

	Multi-Layer Perceptron
	MLPerceptron
	Multi-Layer Perceptron Architecture
	Figure 5-1  Multi-Layer Perceptron Architecture


	Vector Quantization and Kohonen Network
	VQKohonen



	Chapter 6  Image Processing
	Pixel Arithmetic and Logical Operators
	Image Geometric Transformations
	RotateImage
	Example 6-1  Using RLbRotateImage() to Rotate a Binary Image
	MirrorImage
	CopyImage

	Mask Convolution
	MaskConvolve
	Example 6-2  Blurring an Image Using Mask Convolution


	Chapter 7  Dynamic Programming
	Dynamic Time Warping
	Figure 7-1 An Alignment Path Between an Observation Sequence and Reference Patterns
	End Point Constraints
	Local Constraints
	Distance Metrics
	EvalDTW
	PatternIni
	PatternFree
	Example 7-1  Using DTW Evaluation

	Hidden Markov Models
	The Feature Extraction Task
	The Training Task
	The Recognition Task
	HMM Implementation and Class Concept
	HMM References
	InitHMMServer
	FreeHMMServer
	EvalHMMViterbi
	CreateHMMClass
	FreeHMMClass
	AddHMMToClass
	RemoveHMMFromClass
	HMMFreeAll


	Chapter 8  Miscellaneous Functions
	Data Conversion
	Scaling Down
	ConvertDown
	Example 8-1  Using the Function RLswConvertDown()
	bConvertDown
	Example 8-2  Using the Function RLdwbConvertDown()

	Scaling Up
	ConvertUp
	Example 8-3  Using the Function RLwsConvertUp()
	bConvertUp
	Example 8-4  Using the Function RLwsbConvertUp()

	Complex Vector Support
	bConvert


	Processor Information
	Table 8-1  Family Field Values and Descriptions
	GetProcessorInfo

	Library Information
	GetLibraryInfo


	Bibliography
	Index
	Untitled
	

