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The Intel Recognition Primitives Library provides a set of recognition
primitives and feature extraction functions targeted for use by speech and
optical character recognition (OCR) application developers.

Manual Organization

This manual describes the functions in the Recognition Primitives Library.
Each function is introduced by its name and a short description of its
purpose.  This is followed by a function prototype and definitions of its
arguments.  Finally there is a discussion of the algorithm and its
implementation.

The chapters included in this manual are:

Chapter 1: Overview
Chapter 2: Error Handling
Chapter 3: Vector Operations
Chapter 4: Signal Processing
Chapter 5: Recognition Basics
Chapter 6: Image Processing
Chapter 7: Dynamic Programming
Chapter 8: Miscellaneous Functions

Related Publications

This manual is designed as a reference for the Intel Recognition Primitives
Library.  The routines described in this manual are tailored for speech
signal analysis rather than general signal analysis.  Thus, many of the
potential signal processing variations involving complex input types,
conjugate-symmetric input, in-place computation, not-in-place
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computation, and so on, are not included here.  If you need a
comprehensive signal processing reference, see the Intel Signal Processing
Library Reference Manual, order number 630508.

Many signal processing programs require other types of scalar and vector
processing, array processing, and linear algebra functions which are not
included in the Intel Recognition Primitives.  The Intel Math Kernal
Library provides such functions with a FORTRAN interface.  For more
information on this library, see the Intel Math Kernal Library Reference
Manual, order number 630813.

This manual also contains numerous references to additional textbooks on
filters and signal processing.

Notational Conventions

This section describes the notational conventions used by the Intel
Recognition Primitives Library and the notational conventions for data
types and function names  used in this manual.

Data Types

The most common data types used in the library are single precision
floating point vectors (32 bits on Win32*) and short integer (16 bits on
Win32) vectors - both for input and output.  In some cases (for example,
distance measures) long integer output is used.  While short integers result
in compact storage representation for data structures, they need to be
augmented by a scaling strategy because of their limited bit capacity
(namely, the range of -32768 to +32767 on Win32).

Other data types used in the library are 8-bit signed integer, 8-bit unsigned
integer, 4-bit nibble and 1-bit.
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Bit position is indicated with reference to the least significant bit in the
smallest addressable unit (a byte). The figure below shows the order of
bytes and bits within a byte:

→  increasing address  →

 byte0  byte1  byte2  byte3

 76543210  76543210  76543210  76543210

Nibble position is indicated as follows:

→  increasing address  →

byte0  byte1  byte2  byte3

 11110000  11110000  11110000  11110000

Data Type Conventions

Many of the functions in the Recognition Primitives Library are available
for a variety of integer vectors and for single-precision real and complex
vectors. The Recognition Primitives Library distinguishes input vector
types by the use of a character code.  A character code embedded within
the prefix of the function name indicates what type of vector can be used
with a particular function.  Table 1-1 lists the names of the vector types
and their corresponding character codes.
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Table 1-1 Vector Types and Corresponding Character Codes

Vector Type Character Code

bit vector RLb

4-bit nibble vector RLn

unsigned byte vector RLy

signed byte vector RLt

16-bit integer vector RLw

16-bit integer complex vector RLv

single-precision real vector RLs

single-precision complex vector RLc

32-bit integer vector RLi

Additionally, the output of some of the DFT and FFT functions are
complex values formatted as a vector of type WCplx (for 16-bit integer
valued inputs) and SCplx  (for floating-point valued inputs).  The C
definitions for WCplx and SCplx  are as follows:

typedef struct _WCplx {
short int real;
short int imag;

} WCplx;

typedef struct _SCplx {
float real;
float imag;

} SCplx;
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Function Name Conventions

The names of functions in the Recognition Primitives Library always
begin with the RL prefix and have the following general format:

RL < character code  > < flags  > < name > < mods > ()

where:

character  code One of the character codes described in
Table 1-1 above (b, n, y , t , w, s , c , or i ).  The
character code indicates which function to use
with which data type.

flags The flags field is optional.  The only flag
currently defined is b, which indicates a block (or
vector) variety of the function.  A block variety
of a function is generally equivalent to multiple
invocations of the non-block (scalar) function.

name Indicates the core functionality, such as Add, Fft ,
or Cepstral .

mods The mods field is optional and indicates a
modification to the core functionality of the
function group.  Examples of mods are Nip  (not-
in-place) and Tr  (truncation).

Integer Scaling

Most of the integer functions in the Recognition Primitives Library
perform their internal computations  using a higher precision than the
integer data types used for input and output.  For the Pentium processor,
this higher precision is single- and double-precision floating point
representation.

These integer functions posses two arguments, doScaleOutput  and
scaleFactor , which dictate how the internal representation is converted
to integers before output.  The doScaleOutput  and scaleFactor

arguments are described in greater detail below.
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A typical integer function has the following format:

Rlw???(..., int doScaleOutput, int *scaleFactor);

doScaleOutput Indicates the scaling options to be used in
returning the output.  The following scaling
options are currently allowed:

RL_NO_SCALE

Does not scale the output at all.  This option
gives the fastest performance.  Truncation or
wrap-around and other erroneous results will
occur when overflow or underflow occur.  A
scaleFactor  of 0 is returned.

RL_FIXED_SCALE

The output is always multiplied by 2-scaleFactor .  The
scaleFactor  is returned without any alteration.

RL_AUTO_SCALE

The output is automatically scaled up or down to
make the best use of the short integer output
representation.  Therefore, scaleFactor  is
chosen automatically, the output is multiplied by
2-scaleFactor , and scaleFactor  is returned.

RL_SATURATE

When overflow or underflow occurs, the output
is clipped to SHRT_MAX (that is, +32767 - long
integers are clipped to LONG_MAX) or SHRT_MIN

(that is, -32768 - long integers are clipped to
LONG_MIN) respectively, otherwise it is not
changed.  A scaleFactor  of 0 is returned.

scaleFactor The scale factor (an exponent of 2) that is either
specified or chosen automatically depending on
the doScaleOutput  argument.  If the option
RL_AUTO_SCALE was chosen automatically, the
actual output can be obtained from the returned
scaleFactor  as
actual_ouput = output * 2 scaleFactor
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This chapter describes the error handling facility supplied with the Intel
Recognition Primitives Library. The Recognition Primitives Library
functions report a variety of errors including bad arguments (NULL

pointers and out-of-range parameters) and out of memory conditions.
When a function detects an error, instead of returning a status code, the
function signals an error by calling RLSetStatus() . This allows the error
handling mechanism to be handled separately from the normal flow of the
application code. The code is thus cleaner and more compact as shown in
this example.

maximum = RLybMax(src, n, &position);

/* do error checking */

if(RLGetStatus()<0)

The error handling system is hidden within the function RLybMax() . Thus,
this statement is uncluttered by error handling code and results in a
statement which closely resembles a mathematical formula. The error is
detected by calling RLGetStatus().

The errors that a function may signal are implementation-dependent. Your
application should assume that every library function call may result in
some error condition. The Intel Recognition Primitives Library performs
extensive error checks (for example, NULL pointers, out-of-range
parameters, corrupted states) for every library function.

Error macros are provided to simplify the coding for error checking and
reporting. You can modify the way your application handles errors by
calling RLRedirectError() with a pointer to your own error handling
function. For more information, see “Adding Your Own Error Handler”
later in this chapter. For even more flexibility, you can replace the whole
error handling facility with your own code. The source code of the default
error handling facility is provided.
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There are two versions of Intel Recognition Primitives Library: the debug
version and the non-debug version. The debug version detects more errors
than the non-debug version (for example, it checks bad parameters). The
debug version can be used during application development and the
non-debug version for the released application. The non-debug version
detects much fewer errors (for example, failure of memory allocation) and
is therefore faster.

Error Functions

The following sections describe the error functions in the Intel
Recognition Primitives Library.

Error
Performs basic error
handling.

RLStatus RLError(RLStatus status, const char * func,
const char * context, const char * file, int line)

status Code that indicates the type of error (see Table 2-1,
“RLError() Status Codes”).

func Name of the function where the error occurred.

context Provides additional information about the context in
which the error occurred. If the value of context is
NULL or empty, this string will not appear in the error
message.

file Name of the source file whith the function text.

line The line number where the error occurred.
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Discussion

The RLError()  function should be called whenever any of the library’s
functions encounters an error. The actual error reporting will be handled
differently, depending on whether the program is running in Windows
mode or in console mode. Within each invocation mode, you can set the
error mode flag to alter the behavior of the RLError()  function. See
“SetErrMode” (for RLSetErrMode() ) for more information on the defined
error modes.

To simplify the coding for error checking and reporting, the error handling
system supplied by the Intel Recognition Primitives Library supports a set
of error macros. See “Error Macros” for a detailed description of the error
handling macros.

The RLError()  function calls the default error reporting function. You
can change the default error reporting function by calling
RLRedirectError() . For more information, see “RedirectError”.



Intel Recognition Primitives Library Reference Manual

2-4

2
GetStatus, SetStatus
Gets and sets the error
codes which describe
the type of error being
reported.

typedef int RLStatus;

RLStatus RLGetStatus(void);

void RLSetStatus(RLStatus status );

status Code that indicates the type of error (see Table 2-1,
“RLError() Status Codes”).

Discussion

The RLGetStatus()  and RLSetStatus()  functions get and set the error
status codes which describe the type of error being reported. See “Status
Codes” for descriptions of each of the error status codes.



Error Handling

2-5

2
GetErrMode, SetErrMode
Gets and sets the error
modes which describe
how an error is
processed.

#define RL_ErrModeLeaf 0

#define RL_ErrModeParent 1

#define RL_ErrModeSilent 2

int RLGetErrMode(void);

void RLSetErrMode(int errMode );

errMode Indicates how errors will be processed. The possible
values for errMode  are RL_ErrModeLeaf ,
RL_ErrModeParent  or RL_ErrModeSilent .

Discussion

NOTE. This section describes how the default error handler handles
errors for applications which run in console mode. If your application
has a custom error handler, errors will be processed differently than
described below.

The RLSetErrMode() function sets the error modes which describe how
errors are processed. The defined error modes are RL_ErrModeLeaf ,
RL_ErrModeParent  and RL_ErrModeSilent .

If you specify RL_ErrModeLeaf , errors are processed in the “leaves” of the
function call tree. The RLError() function (in console mode) prints an
error message describing status , func , and context . It then terminates
the program.

If you specify RL_ErrModeParent , errors are processed in the “parents” of
the function call tree. When RLError() is called as the result of detecting
an error, an error message will print but the program will not terminate.
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Each time a function calls another function, it must check to see if an error
has occurred. When an error occurs, the function should call RLError()

specifying RL_StsBackTrace , and then return. The macro RL_ERRCHK()

may be used to perform both the error check and back trace call. This
passes the error “up” the function call tree until eventually some parent
function (possibly main() ) detects the error and terminates the program.

RL_ErrModeSilent is similar to RL_ErrModeParent , except that error
messages are not printed.

RL_ErrModeLeaf is the default, and is the simplest method of processing
errors. RL_ErrModeParent requires more programming effort, but
provides more detailed information about where and why an error
occurred. All of the functions in the library support both options (that is,
they use RL_ERRCHK() after function calls). If an application uses the
RL_ErrModeParent option, it is essential that it checks for errors after all
library functions that it calls.

The status code of the last detected error is stored into the internal static
variable status  which can be returned by calling RLGetStatus() .
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ErrorStr
Translates an error or
status code into a
textual description.

const char* RLErrorStr(RLStatus status );

status  Code that indicates the type of error (see Table 2-1,
“RLError() Status Codes”).

Discussion

The function RLErrorStr() returns a short string describing status .
Use this function to produce error messages for users. The returned pointer
is a pointer to an internal static buffer that may be over-written on the next
call to RLErrorStr() .

RedirectError
Assigns a new error
handler to call when an
error occurs.

RLErrCallBack RLRedirectError(RLErrCallBack func );

func  Pointer to the function that will be called when an error
occurs.

Discussion

The RLRedirectError()  function assigns a new function to be called
when an error occurs in the Intel Recognition Primitives Library. If func

is NULL, RLRedirectError()  installs the Intel Recognition Primitives
Library’s default error handler.
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The return value of RLRedirectError()  is a pointer to the previously
assigned error handling function.

For the definition of the function typedef RLErrCallBack , see the include
file rlerror.h . See “Adding Your Own Error Handler” for more
information on the RLRedirectError() function.

Error Macros

The error macros associated with the RLError() function are described
below.

#define RL_ERROR( status , func , context ) \

RLError(( status ), ( func ), ( context ), __FILE__, \

__LINE__)

#define RL_ERRCHK( func , context ) \

( (RLGetStatus() >= 0) ? RL_StsOk : \

RL_ERROR(RL_StsBackTrace,( func ),( context )) )

#define RL_ASSERT( expr , func , context )\

( ( expr ) ? RL_StsOk : \

RL_ERROR(RL_StsInternal, ( func ), ( context )) )

#define RL_RSTERR()  (RLSetStatus(RL_StsOk))

context  Provides additional information about the context in
which the error occurred. If the value of context  is
NULL or empty, this string will not appear in the error
message.

expr An expression that checks for an error condition and
returns FALSE if an error occurred.

func  Name of the function where the error occurred.

status  Code that indicates the type of error (see Table 2-1,
“RLError() Status Codes.”)
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Discussion

The RL_ASSERT() macro checks for the error condition expr  and sets the
error status RL_StsInternal if the error occurred.

The RL_ERRCHK() macro checks to see if an error has occurred by
checking the error status. If an error has occurred, RL_ERRCHK() creates
an error back trace message and returns a non-zero value. This macro
should normally be used after any call to a function that might have
signaled an error.

The RL_ERROR() macro calls the RLError() function with current file
name and line as last arguments. This macro is used by other error macros.
By changing RL_ERROR() you can modify the error reporting behavior
without changing a single line of source code.

The RL_RSTERR() macro resets the error status to RL_StsOk , thus
clearing any error condition. This macro should be used by an application
when it decides to ignore an error condition.

Status Codes

The status codes used by the Intel Recognition Primitives Library are
described in Table 2-1. Status codes are integers, not an enumerated type.
This allows an application to extend the set of status codes beyond those
used by the library itself. Negative codes indicate errors, while non-
negative codes indicate success.
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Table 2-1 RLError() Status Codes

Status Code Description

RL_StsOk    0 No error. The RLError() function will do
nothing if called with this status code.

RL_StsBackTrace   -1 Implements a backtrace of the function calls
that lead to an error. If RL_ERRCHK() detects
that a function call resulted in an error, it calls
RL_ERROR() with this status code to provide
further context information for the user.

RL_StsError   -2 An error of unknown origin, or of an origin not
correctly described by the other error codes.

RL_StsInternal   -3 An internal “consistency” error, often the result
of a corrupted state structure. These errors are
typically the result of a failed assertion.

RL_StsNoMem   -4 A function attempted to allocate memory using
malloc() or a related function and was
unsuccessful. The message context
indicates the intended use of the memory.

RL_StsBadArg   -5 One of the arguments passed to the function is
invalid. The message context  indicates
which argument and why.

RL_StsBadFunc   -6 The function is not supported by the
implementation, or the particular operation
implied by the given arguments is not
supported.

RL_StsNoConv   -7 An iterative convergence algorithm failed to
converge within a reasonable number of
iterations.

RL_StsOverflow  -20 The result of the calculation has been greater
than the maximal value of data type.

RL_StsUnderflow  -21 The result of the calculation has been less than
the minimal value of data type.
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The status of the last error reported is stored into the internal static
variable. Its value is the initially RL_StsOk .  The last status can be set by
calling RLSetStatus() and can be returned by calling RLGetStatus() .

If the application decides to ignore an error, it should reset the last status
back to RL_StsOk (see RL_RSTERR() under “Error Macros”). An
application-supplied error handling function must update the last status
correctly; otherwise the Intel Recognition Primitives Library might fail.

Errors with status codes RL_StsBadArg,  RL_StsOverflow  or
RL_StsUnderflow  are detected only by the debug version of the Intel
Recognition Primitives Library. Overflow and underflow cases are not
always checked, but only in functions with special integer scaling (see
“Interger Scaling” in Chapter 1).

Error Handling Example

Example 2-1 describes the default error handling for a console application.
In the example RLcFft() represents a library function, main() and
appFunc() represents application code.

The value of the error mode is set to RL_ErrModeParent . The
RL_ErrModeParent option produces a more detailed account of the error
conditions.
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Example 2-1 Error Functions

/* application main function */

main()

{

SCplx samps[1024]

RLSetErrMode(RL_ErrModeParent);

appFunc(5, 45, samps);

if (RL_ERRCHK("main","compute something"))

exit(1);

return 0;

}

/* application subroutine */

void appFunc(int order1, int order2, SCplx *samps)

{

RLcFft(samps, order1, RL_FORWARD);

if (RL_ERRCHK("appFunc","compute using order1")) return;

RLcFft(samps, order2, RL_FORWARD);

if (RL_ERRCHK("appFunc","compute using order2")) return;

/* do some more work */

}

/* library function */
void RLcFft(SCplx * samps, int order1, int flags);
{

if (order > 31) {
RL_ERROR(RL_StsBadArg, "RLcFft",

"order must be less than 32");
return;

}
/* code to do some real work goes here */

}

When the program is run, it produces the output illustrated in
Example 2-2.
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Example 2-2 Output for the Error Function Program (RL_ErrModeParent)

RPL Error: Bad argument
in function [rlfft.c:231] RLcFft:
order must be less than 32
called from function [test.c:16] appFunc:

compute using order2
called from function [test.c:6] main:

compute something

If the program had run with the RL_ErrModeLeaf option instead of
RL_ErrModeParent , only the first three lines of the above output would
have been produced before the program terminated.

Adding Your Own Error Handler

The Intel Recognition Primitives Library allows you to define your own
error handler. User-defined error handlers are useful if you want your
application to send error messages to a destination other than the standard
error output stream. For example, you can choose to send error messages to
a dialog box if your application is running under a Windows system or
you can choose to send error messages to a special log file.

There are two methods of adding your own error handler. In the first
method, you can replace the RLError()  function or the complete error
handling library with your own code. Note that this method can only be
used at link time.

In the second method, you can use the RLRedirectError() function to
replace the error handler at run time. The steps below describe how to
create your own error handler and how to use the
RLRedirectError() function to redirect error reporting.

1.  Define a function with the function prototype, RLErrorCallBack() ,
as defined by the Intel Recognition Primitives Library.

2.  Your application should then call the RLRedirectError() function
to redirect error reporting for your own function. All subsequent calls
to RLError() will call your own error handler.

3.  To redirect the error handling back to the default handler, simply call
RLRedirectError() with a NULL pointer.



Intel Recognition Primitives Library Reference Manual

2-14

2
Example 2-3 illustrates a user-defined error handler function,
ownError() , which simply prints an error message constructed from its
arguments and exits.

Example 2-3 A Simple Error Handler

RLStatus ownError(RLStatus status, const char *func,
const char *context, const char *file, int line)

{
fprintf(stderr, "IRPL error: %s, ", RLErrorStr(status));
fprintf(stderr, "function %s, ", func ? func : "<unknown>");
if (line > 0) fprintf(stderr, "line %d, ", line);
if (file != NULL) fprintf(stderr, "file %s, ", file);
if (context) fprintf(stderr, "context %s\n", context);
exit(1);

}

main ()
{

extern RLErrCallBack ownError;
/* Redirect errors to your own error handler */
RLRedirectError(ownError);
/* Redirect errors back to the default error handler */
RLRedirectError(NULL);

}
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The functions described in this chapter perform vector initialization,
vector arithmetic, and logical operations on vectors.

Vector Initialization Functions

This section describes the functions in the Intel Recognition Primitives
Library which perform vector initialization.

bCopy
Initializes a vector with
the contents of a second
vector.

void RLbbCopy(const unsigned char *src, unsigned char
*dst, int srcStartPos, int dstStartPos, int n);

/* bit vectors */

void RLnbCopy(const unsigned char *src, unsigned char
*dst, int srcStartPos, int dstStartPos, int n);

/* 4-bit nibble vectors */

void RLybCopy(const unsigned char *src, unsigned char
*dst, int n);

/* unsigned byte vectors */

void RLtbCopy(const signed char *src, signed char *dst,
int n);

/* signed byte vectors */
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void RLwbCopy(const short int *src, short int *dst, int
n);

/* 16-bit integer values */

void RLsbCopy(const float *src, float *dst, int n);
/* single precision; real values */

src Pointer to the source vector used to initialize
dst[i].

dst Pointer to the vector to be initialized.

srcStartPos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
source vector.  For bit vectors this value can be 0
through 7 (0 for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
can be 0 or 1 (0 for the least significant nibble
and 1 for the most significant nibble).

dstStartPos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
destination vector.  For bit vectors this value can
be 0 through 7 (0 for the least significant bit and
7 for the most significant bit) and for nibble
vectors it can be 0 or 1 (0 for the least significant
nibble and 1 for the most significant nibble).

n The number of elements to copy.

Discussion

The function RL?bCopy() copies the first n elements from a source vector
src[i] into a destination vector dst[i] (where 0 <= i < n).
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bSet
Initializes a vector with
a scalar value.

void RLbbSet(unsigned char val, unsigned char *dst, int
startPos, int n);

/* bit vectors */

void RLnbSet(unsigned char val, unsigned char *dst, int
startPos, int n);

/* 4-bit nibble vectors */

void RLybSet(unsigned char val, unsigned char *dst, int
n);

/* unsigned byte vectors */

void RLtbSet(signed char val, signed char *dst, int n);
/* signed byte vectors */

void RLwbSet(short int val, short int *dst, int n);
/* 16-bit integer values */

void RLsbSet(float val, float *dst, int n);
/* single precision; real values */

val The value used to initialize dst[i].

dst Pointer to the vector to be initialized.

startPos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
vector.  For bit vectors this value can be 0
through 7 (0 for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
can be 0 or 1 (0 for the least significant nibble
and 1 for the most significant nibble).

n The number of elements to initialize.

Discussion

The function RL?bSet() initializes the first n elements of the vector
dst[i] (where 0 <= i < n) to contain the same value val.
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bZero
Initializes a vector to
zero.

void RLbbZero(unsigned char *dst, int startPos, int n);
/* bit vectors */

void RLnbZero(unsigned char *dst, int startPos, int n);
/* 4-bit nibble vectors */

void RLybZero(unsigned char *dst, int n);
/* unsigned byte vectors */

void RLtbZero(signed char *dst, int n);
/* signed byte vectors */

void RLwbZero(short int *dst, int n);
/* 16-bit integer vector */

void RLsbZero(float *dst, int n);
/* single precision; real vector */

dst Pointer to the vector to be initialized.

startPos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
vector.  For bit vectors this value can be 0
through 7 (0 for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
can be 0 or 1 (0 for the least significant nibble
and 1 for the most significant nibble).

n The number of elements to initialize.

Discussion

The function RL?bZero() initializes the first n elements of the vector
dst[i] (where 0 <= i < n) to 0.
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GetBit
Gets a bit value from a
vector.

unsigned char RLGetBit(const unsigned char *src, int n);

src Pointer to the source vector from which a bit
value is extracted.

n Bit number (do not confuse with start position)
from the start of vector src[i] aligned on a byte
boundary.

Discussion

The function RLGetBit() gets the value of bit n from a vector src[i].
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SetBit
Initializes the value of a
bit within a vector.

void RLSetBit(const unsigned char *src, int n, unsigned
char val);

src Pointer to the source vector where the bit value is
set.

n Bit number (do not confuse with start position)
from the start of vector src[i] aligned on a byte
boundary.

val The value used to set the bit.

Discussion

The function RLSetBit() initializes bit n of a vector src[i] with value
val.
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GetNibble
Gets a nibble value from
a vector.

unsigned char RLGetNibble(const unsigned char *src, int
n);

src Pointer to the source vector from which the
nibble value is extracted.

n Nibble number (do not confuse with start
position) from the start of vector src[i] aligned
on a byte boundary.

Discussion

The function RLGetNibble() gets the value of nibble n from a vector
src[i].
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SetNibble
Initializes the value of a
nibble within a vector.

void RLSetNibble(const unsigned char *src, int n,
unsigned char val);

src Pointer to the source vector where the nibble
value is to be initialized.

n Nibble number (do not confuse with start
position) from the start of vector src[i] aligned
on a byte boundary.

val The value used to set the nibble.

Discussion

The function RLSetNibble() initializes nibble n of a vector src[i] with
the value val.
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Vector Arithmetic Functions

This section describes the Recognition Primitives Library functions which
perform basic, element-wise operations between vectors.  The library
provides two versions of each function.  One version performs the
operation “in-place,” while the other stores the results of the operation in a
third vector.

bAdd2
Adds the elements of two
vectors.

void RLnbAdd2(const unsigned char *src, unsigned char
*dst, int srcStartPos, int dstStartPos, int n, int
doScale, int *scaleFactor);

/* 4-bit nibble vectors */

void RLybAdd2(const unsigned char *src, unsigned char
*dst, int n, int doScale, int *scaleFactor);

/* unsigned byte vectors */

void RLtbAdd2(const signed char *src, signed char *dst,
int n, int doScale, int *scaleFactor);

/* signed byte vectors */

void RLwbAdd2(const short int *src, short int *dst, int
n, int doScale, int *scaleFactor);

/* 16-bit integer vectors */

void RLsbAdd2(const float *src, float *dst, int n);
/* single precision; real values */

src Pointer to the vector to be added to dst[i].

dst Pointer to the vector dst[i] which stores the
results of the addition src[i] + dst[i].

srcStartPos For nibble vectors, indicates the position of the
element within the first byte of the source vector.
This value can be 0 or 1 (0 for the least



Intel Recognition Primitives Library Reference Manual

3-10

3
significant nibble and 1 for the most significant
nibble).

dstStartPos For nibble vectors, indicates the position of the
element within the first byte of the destination
vector. This value can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant
nibble).

n The number of elements to be added.

doScaleOutput, Refer to “Integer Scaling” in Chapter 1.
scaleFactor

Discussion

The function RL?bAdd2() adds the first n elements of a source vector
src[i] to the elements of destination vector dst[i] (where 0 <= i < n).
The results of the operation are stored in dst[i].
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bAdd2s
Adds a scalar value to a
vector.

void RLnbAdd2s(unsigned char val, unsigned char *dst, int
startPos, int n, int doScale, int *scaleFactor);

/* 4-bit nibble vectors */

void RLybAdd2s(unsigned char val, unsigned char *dst, int
n, int doScale, int *scaleFactor);

/* unsigned byte vectors */

void RLtbAdd2s(signed char val, signed char *dst, int n,
int doScale, int *scaleFactor);

/* signed byte vectors */

void RLwbAdd2s(short int val, short int *dst, int n, int
doScale, int *scaleFactor);

/* 16-bit integer vectors */

void RLsbAdd2s(float val, float *dst, int n);
/* single precision; real values */

val The value to be added to each element of the
vector dst[i].

dst Pointer to the vector dst[i] which stores the
results of the addition val + dst[i].

startPos For nibble vectors, indicates the position of the
element within the first byte of the vector. This
value can be 0 or 1 (0 for the least significant
nibble and 1 for the most significant nibble).

n The number of elements to be operated on.

doScaleOutput, Refer to “Integer Scaling” in Chapter 1.
scaleFactor
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Discussion

The function RL?bAdd2s() adds the scalar value val to each element of
the first n elements of destination vector dst[i] (where 0 <= i < n).  The
results of the operation are stored in dst[i].
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bAdd3
Adds the elements of two
vectors and stores the
result in a third vector.

void RLnbAdd3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int srcStartPos, int
dstStartPos, int n, int doScale, int *scaleFactor);

/* 4-bit nibble vectors */

void RLybAdd3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int n, int doScale, int
*scaleFactor);

/* unsigned byte vectors */

void RLtbAdd3(const signed char *srcA, const signed char
*srcB, signed char *dst, int n, int doScale, int
*scaleFactor);

/* signed byte vectors */

void RLwbAdd3(const short int *srcA, const short int
*srcB, short int *dst, int n, int doScale, int
*scaleFactor);

/* 16-bit integer vectors */

void RLsbAdd3(const float *srcA, const float *srcB, float
*dst, int n);

/* single precision; real values */

srcA, srcB Pointers to the vectors whose elements are to be
added together.

dst Pointer to the vector dst[i] which stores the
results of the addition srcA[i] + srcB[i].

srcStartPos For nibble vectors, indicates the position of the
element within the first byte of the source vector.
This value can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant
nibble).
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dstStartPos For nibble vectors, indicates the position of the

element within the first byte of the destination
vector. This value can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant
nibble).

n The number of elements to be added.

doScaleOutput, Refer to “Integer Scaling”  in Chapter 1.
scaleFactor

Discussion

The function RL?bAdd3() adds the first n elements of the source vector
srcA[i] to the elements of vector srcB[i] (where 0 <= i < n).  The
results of the operation are stored in the destination vector dst[i].
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bSub2
Subtracts the elements
of two vectors.

void RLnbSub2(const unsigned char *src, unsigned char
*dst, int srcStartPos, int dstStartPos, int n, int
doScale, int *scaleFactor);

/* 4-bit nibble vectors */

void RLybSub2(const unsigned char *src, unsigned char
*dst, int n, int doScale, int *scaleFactor);

/* unsigned byte vectors */

void RLtbSub2(const signed char *src, signed char *dst,
int n, int doScale, int *scaleFactor);

/* signed byte vectors */

void RLwbSub2(const short int *src, short int *dst, int
n, int doScale, int *scaleFactor);

/* 16-bit integer vectors */

void RLsbSub2(const float *src, float *dst, int n);
/* single precision; real vectors */

src Pointer to the vector to be subtracted from
dst[i].

dst Pointer to the vector dst[i] which stores the
results of the subtraction dst[i] - src[i].

srcStartPos For nibble vectors, indicates the position of the
element within the first byte of the source vector.
This value can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant
nibble).

dstStartPos For nibble vectors, indicates the position of the
element within the first byte of the destination
vector. This value can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant
nibble).
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n The number of elements to be subtracted.

doScaleOutput, Refer to “Integer Scaling” in Chapter 1.
scaleFactor

Discussion

The function RL?bSub2() subtracts the first n elements of the  source
vector src[i] from the elements of the destination vector dst[i] (where
0 <= i < n).  The results of the operation are stored in dst[i].
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bSub2s
Subtracts a scalar value
from a vector.

void RLnbSub2s(unsigned char val, unsigned char *dst, int
startPos, int n, int doScale, int *scaleFactor);

/* 4-bit nibble vectors */

void RLybSub2s(unsigned char val, unsigned char *dst, int
n, int doScale, int *scaleFactor);

/* unsigned byte vectors */

void RLtbSub2s(signed char val, signed char *dst, int n,
int doScale, int *scaleFactor);

/* signed byte vectors */

void RLwbSub2s(short int val, short int *dst, int n, int
doScale, int *scaleFactor);

/* 16-bit integer vector */

void RLsbSub2s(float val, float *dst, int n);
/* single precision; real vector */

val The value to be subtracted from each element of
the vector dst[i].

dst Pointer to the vector dst[i] which stores the
results of the subtraction dst[i] - val[i].

startPos For nibble vectors, indicates the position of the
element within the first byte of the vector. This
value can be 0 or 1 (0 for the least significant
nibble and 1 for the most significant nibble).

n The number of elements to be operated on.

doScaleOutput, Refer to “Integer Scaling” in Chapter 1.
scaleFactor
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Discussion

The function RL?bSub2s() subtracts the scalar value val from each
element of the destination vector dst[i] (where 0 <= i < n).  The results
of the operation are stored in dst[i].
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bSub3
Subtracts the elements
of two vectors and
stores the result in a
third vector.

void RLnbSub3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int srcStartPos, int
dstStartPos, int n, int doScale, int *scaleFactor);

/* 4-bit nibble vectors */

void RLybSub3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int n, int doScale, int
*scaleFactor);

/* unsigned byte vectors */

void RLtbSub3(const signed char *srcA, const signed char
*srcB, signed char *dst, int n, int doScale, int
*scaleFactor);

/* signed byte vectors */

void RLwbSub3(const short int *srcA, const short int
*srcB, short int *dst, int n, int doScale, int
*scaleFactor);

/* 16-bit integer vectors */

void RLsbSub3(const float *srcA, const float *srcB, float
*dst, int n, int doScale, int *scaleFactor);

/* single precision; real values */

srcA, srcB Pointers to the vectors whose elements are to be
subtracted from each other.

dst Pointer to the vector dst[i] which stores the
results of the subtraction srcB[i] - srcA[i].

srcStartPos For nibble vectors, indicates the position of the
element within the first byte of the source vector.
This value can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant
nibble).
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dstStartPos For nibble vectors, indicates the position of the

element within the first byte of the destination
vector. This value can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant
nibble).

n The number of elements to be operated on.

doScaleOutput, Refer to “Integer Scaling” in Chapter 1.
scaleFactor

Discussion

The function RL?bSub3() subtracts the first n elements of the source
vector srcA[i] from the elements of the vector srcB[i]
(where 0 <= i < n).  The results of the operation are stored in the
destination vector dst[i].
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bMpy2
Multiplies the elements
of two vectors.

void RLnbMpy2(const unsigned char *src, unsigned char
*dst, int srcStartPos, int dstStartPos, int n, int
doScale, int *scaleFactor);

/* 4-bit nibble vectors */

void RLybMpy2(const unsigned char *src, unsigned char
*dst, int n, int doScale, int *scaleFactor);

/* unsigned byte vectors */

void RLtbMpy2(const signed char *src, signed char *dst,
int n, int doScale, int *scaleFactor);

/* signed byte vectors */

void RLwbMpy2(const short int *src, short int *dst, int
n, int doScale, int *scaleFactor);

/* 16-bit integer vectors */

void RLsbMpy2(const float *src, float *dst, int n);
/* single precision; real vectors */

src Pointer to the vector to be multiplied with
dst[i].

dst Pointer to the vector dst[i] which stores the
results of the multiplication src[i] * dst[i].

srcStartPos For nibble vectors, indicates the position of the
element within the first byte of the source vector.
This value can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant
nibble).

dstStartPos For nibble vectors, indicates the position of the
element within the first byte of the destination
vector. This value can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant
nibble).
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n The number of elements to be operated on.

doScaleOutput, Refer to “Integer Scaling” in Chapter 1.
scaleFactor

Discussion

The function RL?bMpy2() multiplies the first n elements of a source
vector src[i] with the elements of a destination vector dst[i]
(where 0 <= i < n).  The results of the operation are stored in dst[i].
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bMpy2s
Multiplies a vector with
a scalar value.

void RLnbMpy2s(unsigned char val, unsigned char *dst, int
startPos, int n, int doScale, int *scaleFactor);

/* 4-bit nibble vectors */

void RLybMpy2s(unsigned char val, unsigned char *dst, int
n, int doScale, int *scaleFactor);

/* unsigned byte vectors */

void RLtbMpy2s(signed char val, signed char *dst, int n,
int doScale, int *scaleFactor);

/* signed byte vectors */

void RLwbMpy2s(short int val, short int *dst, int n, int
doScale, int *scaleFactor);

/* 16-bit integer vector */

void RLsbMpy2s(float val, float *dst, int n);
/* single precision; real vector */

val The value to be multiplied with each element of
the vector dst[i].

dst Pointer to the vector dst which stores the results
of the addition val * dst[i].

startPos For nibble vectors, indicates the position of the
element within the first byte of the vector. This
value can be 0 or 1 (0 for the least significant
nibble and 1 for the most significant nibble).

n The number of elements to be operated on.

doScaleOutput, Refer to “Integer Scaling” in Chapter 1.
scaleFactor
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Discussion

The function RL?bMpy2s() multiplies the scalar value val with each
element of a destination vector dst[i] (where 0 <= i < n).  The results of
the operation are stored in dst[i].
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bMpy3
Multiplies the elements
of two vectors and
stores the result in a
third vector.

void RLnbMpy3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int srcStartPos, int
dstStartPos, int n, int doScale, int *scaleFactor);

/* 4-bit nibble vectors */

void RLybMpy3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int n, int doScale, int
*scaleFactor);

/* unsigned byte vectors */

void RLtbMpy3(const signed char *srcA, const signed char
*srcB, signed char *dst, int n, int doScale, int
*scaleFactor);

/* signed byte vectors */

void RLwbMpy3(const short int *srcA, const short int
*srcB, short int *dst, int n, int doScale, int
*scaleFactor);

/* 16-bit integer vectors */

void RLsbMpy3(const float *srcA, const float *srcB, float
*dst, int n);

/* single precision; real values */

srcA, srcB Pointers to the vectors whose elements are to be
multiplied together.

dst Pointer to the vector dst[i] which stores the
results of the multiplication srcA[i] * srcB[i].

srcStartPos For nibble vectors, indicates the position of the
element within the first byte of the source vector.
This value can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant
nibble).
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dstStartPos For nibble vectors, indicates the position of the

element within the first byte of the destination
vector. This value can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant
nibble).

n The number of elements to be operated on.

doScaleOutput, Refer to “Integer Scaling” in Chapter 1.
scaleFactor

Discussion

The function RL?bMpy3() multiplies the first n elements of the source
vector srcA[i] with the elements of the vector srcB[i]
(where 0 <= i < n).  The results of the operation are stored in the
destination vector dst[i].
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bAbs
Computes the absolute
value of each vector
element.

void RLtbAbs(signed char *dst, int n);
/* signed byte vectors */

void RLwbAbs(short int *dst, int n);
/* 16-bit integer vector */

void RLsbAbs(float *dst, int n);
/* single precision; real vector */

dst Pointer to the vector dst[i].  The absolute
values of the first n elements in this vector will
be computed.

n The number of elements to be operated on.

Discussion

The function RL?bAbs() computes the absolute value of the first n
elements in vector dst[i] (where 0 <= i < n).  The results are stored in
dst[i].
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bAbs2
Computes the absolute
value of each vector
element and stores the
results in another
vector.

void RLtbAbs2(const signed char *src, signed char *dst,
int n);

/* signed byte vectors */

void RLwbAbs2(const short int *src, short int *dst, int
n);

/* 16-bit integer vector */

void RLsbAbs2(const float *src, float *dst, int n);
/* single precision; real vector */

src Pointer to the vector src[i].  The absolute
values of the elements of src[i] will be
computed.

dst Pointer to the vector that stores the absolute
values of the elements of src[i].

n The number of elements to be operated on.

Discussion

The function RL?bAbs2() computes the absolute value of the first n
elements in vector src[i] (where 0 <= i < n).  The results of the
operation are stored in the vector dst[i].
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bShiftL
Shifts the bits of each
element in the input
vector to the left by a
specified number of bits.

void RLnbShiftL(unsigned char *dst, int dstStartPos, int
n, int nShift);

/* 4-bit nibble vectors */

void RLybShiftL(unsigned char *dst, int n, int nShift);
/* unsigned byte vectors */

void RLtbShiftL(signed char *dst, int n, int nShift);
/* signed byte vectors */

void RLwbShiftL(short int *dst, int n, int nShift);
/* 16-bit integer vectors */

dst Pointer to the vector whose elements are to be
shifted.

n The length of the vector whose elements are to
be shifted.

dstStartPos For nibble vectors, indicates the position of the
element within the nibble where the shifting will
begin. The position can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant
nibble).

nShift The number of bits by which the elements of the
vector will be shifted.

Discussion

The function RL?bShiftL() shifts the bits of each element in the input
vector to the left by nShift bits. The vacated bits are filled with zeros.
For nibble vectors, the nibble where shifting will begin is indicated by
dstStartPos.
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bShiftR
Shifts the bits of each
element in the input
vector to the right by a
specified number of bits.

void RLnbShiftR(unsigned char *dst, int dstStartPos, int
n, int nShift);

/* 4-bit nibble vectors */

void RLybShiftR(unsigned char *dst, int n, int nShift);
/* unsigned byte vectors */

void RLtbShiftR(signed char *dst, int n, int nShift);
/* signed byte vectors */

void RLwbShiftR( short int *dst, int n, int nShift);
/* 16-bit integer vectors */

dst Pointer to the vector whose elements are to be
shifted.

n The length of the vector whose elements are to
be shifted.

dstStartPos For nibble vectors, indicates the position of the
element within the nibble where the shifting will
begin.  The position can be 0 or 1 (0 for the least
significant nibble and 1 for the most significant
nibble).

nShift The number of bits by which the elements of the
vector will be shifted.

Discussion

The function RL?bShiftR() shifts the bits of each element in the input
vector to the right by nShift bits. The vacated bits are filled with zeros.
For nibble vectors, the nibble where shifting will begin is indicated by
dstStartPos.
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Sum
Computes the sum of all
elements in a vector.

int RLbSum(unsigned char *dst, int startPos, int n, int
doScale, int *scaleFactor);

/* bit vectors */

int RLnSum(unsigned char *dst, int startPos, int n, int
doScale, int *scaleFactor);

/* 4-bit nibble vectors */

int RLySum(unsigned char *dst, int n, int doScale, int
*scaleFactor);

/* unsigned byte vectors */

int RLtSum(signed char *dst, int n, int doScale, int
*scaleFactor);

/* signed byte vectors */

int RLwSum(short int *dst, int n, int doScale, int
*scaleFactor);

/* 16-bit integer vector */

float RLsSum(float *dst, int n);
/* single precision; real vector */

dst Pointer to the vector whose elements are to be
summed.

startPos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
vector.  For bit vectors this value can be 0
through 7 (0 for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
can be 0 or 1 (0 for the least significant nibble
and 1 for the most significant nibble).

n The number of elements to be operated on.

doScaleOutput, Refer to “Integer Scaling” in Chapter 1.
scaleFactor
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Discussion

The function RL?Sum() computes and returns the sum of the first n
elements of the vector dst[i] (where 0 <= i < n).
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Min
Finds the minimum
valued element of a
vector.

unsigned char RLnMin(unsigned char *src, int startPos,
int n, int *position);

/* 4-bit nibble vectors */

unsigned char RLyMin(unsigned char *src, int n, int
*position);

/* unsigned byte vectors */

signed char RLtMin(signed char *src, int n, int
*position);

/* signed byte vectors */

short int RLwMin(short int *src, int n, int *position);
/* 16-bit integer vector */

float RLsMin(float *src, int n, int *position);
/* single precision; real vector */

src Pointer to the vector src[i] whose minimum-
valued element is to be found.

startPos For nibble vectors, indicates the position of the
element within the first byte of the vector. This
value can be 0 or 1 (0 for the least significant
nibble and 1 for the most significant nibble).

n The number of elements to be operated on.

position The index of the minimum-valued element.

Discussion

The function RL?Min() finds the minimum-valued element of the first n
elements of the vector src[i] (where 0 <= i < n); its index is returned in
position.
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 Max
Finds the maximum
valued element of a
vector.

unsigned char RLnMax(unsigned char *src, int startPos,
int n, int *position);

/* 4-bit nibble vectors */

unsigned char RLyMax(unsigned char *src, int n, int
*position);

/* unsigned byte vectors */

signed char RLtMax(signed char *src, int n, int
*position);

/* signed byte vectors */

short int RLwMax(short int *src, int n, int *position);
/* 16-bit integer vector */

float RLsMax(float *src, int n, int *position);
/* single precision; real vector */

src Pointer to the vector whose maximum-valued
element is to be found.

startPos For nibble vectors, indicates the position of the
element within the first byte of the vector. This
value can be 0 or 1 (0 for the least significant
nibble and 1 for the most significant nibble).

n The number of elements to be operated on.

position The index of the maximum-valued element.

Discussion

The function RL?Max() finds the maximum-valued element of the first n
elements of the vector src[i] (where 0 <= i < n); its index is returned in
position.
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Vector Logical Functions

This section describes the Recognition Primitives Library functions which
perform basic, element-wise logical operations between vectors.  The
library provides two versions of each function.  One version performs the
operation “in-place,” while the other stores the results of the operation in a
third vector.

bAnd2
ANDs the elements of
two vectors.

void RLbbAnd2(const unsigned char *src, unsigned char
*dst, int srcStartPos, int dstStartPos, int n);

/* bit vectors */

void RLnbAnd2(const unsigned char *src, unsigned char
*dst, int srcStartPos, int dstStartPos, int n);

/* 4-bit nibble vectors */

void RLybAnd2(const unsigned char *src, unsigned char
*dst, int n);

/* unsigned byte vectors */

void RLwbAnd2(const short int *src, short int *dst, int
n);

/* 16-bit integer vectors */

src Pointer to the vector to be bitwise ANDed with
elements of vector dst[i].

dst Pointer to the vector dst[i] which stores the
results of the AND operation src[i] AND dst[i].

srcStartPos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
source vector.  For bit vectors this value can be 0
through 7 (0 for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
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can be 0 or 1 (0 for the least significant nibble
and 1 for the most significant nibble).

dstStartPos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
destination vector.  For bit vectors this value can
be 0 through 7 (0 for the least significant bit and
7 for the most significant bit) and for nibble
vectors it can be 0 or 1 (0 for the least significant
nibble and 1 for the most significant nibble).

n The number of elements to be operated on.

Discussion

The function RL?bAnd2() performs an element-wise logical AND of the
first n elements of a source vector src[i] with the first n elements of the
destination vector dst[i] (where 0 <= i < n).  The results are stored in
dst[i].  Each pair of elements is bit-wise ANDed.



Vector Operations

3-37

3
bAnd2s
ANDs the elements of a
vector with a scalar
value.

void RLnbAnd2s(const unsigned char val, unsigned char
*dst, int startPos, int n);

/* 4-bit nibble vectors */

void RLybAnd2s(const unsigned char val, unsigned char
*dst, int n);

/* unsigned byte vectors */

void RLwbAnd2s(const short int val, short int *dst, int
n);

/* 16-bit integer vectors */

val The scalar which is ANDed with each vector
element.

dst Pointer to the vector dst[i] which stores the
results of the AND operation dst[i] AND val.

startPos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
vector.  For bit vectors this value can be 0
through 7 (0 for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
can be 0 or 1 (0 for the least significant nibble
and 1 for the most significant nibble).

n The number of elements to be operated on.
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Discussion

The function RL?bAnd2s() performs an element-wise logical AND of the
scalar val with the first n elements of a destination vector dst[i].  The
results are stored in dst[i] (where 0 <= i < n).  The scalar is bit-wise
ANDed with each of the first n elements of the vector.
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bAnd3
ANDs the elements of
two vectors and stores
the result in a third
vector.

void RLbbAnd3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int srcStartPos, int
dstStartPos, int n);

/* bit vectors */

void RLnbAnd3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int srcStartPos, int
dstStartPos, int n);

/* 4-bit nibble vectors */

void RLybAnd3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int n);

/* unsigned byte vectors */

void RLwbAnd3(const short int *srcA, const short int
*srcB, short int *dst, int n);

/* 16-bit integer vectors */

srcA, srcB Pointers to the vectors whose elements are to be
bitwise ANDed.

dst Pointer to the vector dst[i] which stores the
results of the AND operation srcA[i] AND
srcB[i].

srcStartPos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
source vector.  For bit vectors this value can be 0
through 7 (0 for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
can be 0 or 1 (0 for the least significant nibble
and 1 for the most significant nibble).

dstStartPos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
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destination vector.  For bit vectors this value can
be 0 through 7 (0 for the least significant bit and
7 for the most significant bit) and for nibble
vectors it can be 0 or 1 (0 for the least significant
nibble and 1 for the most significant nibble).

n The number of elements to be operated on.

Discussion

The function RL?bAnd3() performs an element-wise logical AND of the
first n elements of a source vector srcA[i] with the first n elements of
another vector srcB[i] (where 0 <= i < n).  The results are stored in
dst[i].  Each pair of elements is bit-wise ANDed.
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bXor2
XORs the elements of
two vectors.

void RLbbXor2(const unsigned char *src, unsigned char
*dst, int srcStartPos, int dstStartPos, int n);

/* bit vectors */

void RLnbXor2(const unsigned char *src, unsigned char
*dst, int srcStartPos, int dstStartPos, int n);

/* 4-bit nibble vectors */

void RLybXor2(const unsigned char *src, unsigned char
*dst, int n);

/* unsigned byte vectors */

void RLwbXor2(const short int *src, short int *dst, int
n);

/* 16-bit integer vectors */

src Pointer to the vector to be bitwise XORed with
dst[i].

dst Pointer to the vector dst[i] which stores the
results of the XOR operation src[i] XOR dst[i].

srcStartPos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
source vector.  For bit vectors this value can be 0
through 7 (0 for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
can be 0 or 1 (0 for the least significant nibble
and 1 for the most significant nibble).

dstStartPos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
destination vector.  For bit vectors this value can
be 0 through 7 (0 for the least significant bit and
7 for the most significant bit) and for nibble
vectors it can be 0 or 1 (0 for the least significant
nibble and 1 for the most significant nibble).
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n The number of elements to be operated on.

Discussion

The function RL?bXor2() performs an element-wise logical XOR of the
first n elements of a source vector src[i] with the first n elements of a
destination vector dst[i] (where 0 <= i < n).  The results of the operation
are stored in dst[i].  Each pair of elements is bit-wise XORed.
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bXor2s
XORs the elements of a
vector with a scalar
value.

void RLnbXor2s(const unsigned char val, unsigned char
*dst, int startPos, int n);

/* 4-bit nibble vectors */

void RLybXor2s(const unsigned char val, unsigned char
*dst, int n);

/* unsigned byte vectors */

void RLwbXor2s(const short int val, short int *dst, int
n);

/* 16-bit integer vectors */

val The scalar which is XORed with each vector
element.

dst Pointer to the vector dst[i] which stores the
results of the XOR operation dst[i] XOR val[i].

startPos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
vector.  For bit vectors this value can be 0
through 7 (0 for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
can be 0 or 1 (0 for the least significant nibble
and 1 for the most significant nibble).

n The number of elements to be operated on.

Discussion

The function RL?bXor2s() performs an element-wise logical XOR of the
scalar val with the first n elements of a destination vector dst[i] (where
0 <= i < n).  The results of the operation are stored in dst[i].  The scalar
is bit-wise XORed with each element of the vector.
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bXor3
XORs the elements of
two vectors and stores
the result in a third
vector.

void RLbbXor3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int srcStartPos, int
dstStartPos, int n);

/* bit vectors */

void RLnbXor3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int srcStartPos, int
dstStartPos, int n);

/* 4-bit nibble vectors */

void RLybXor3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int n);

/* unsigned byte vectors */

void RLwbXor3(const short int *srcA, const short int
*srcB, short int *dst, int n);

/* 16-bit integer vectors */

srcA, srcB Pointers to the vectors whose elements are to be
bitwise XORed.

dst Pointer to the vector dst[i] which stores the
results of the XOR operation srcA[i] XOR
srcB[i].

srcStartPos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
source vector.  For bit vectors this value can be 0
through 7 (0 for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
can be 0 or 1 (0 for the least significant nibble
and 1 for the most significant nibble).

dstStartPos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the



Vector Operations

3-45

3
destination vector.  For bit vectors this value can
be 0 through 7 (0 for the least significant bit and
7 for the most significant bit) and for nibble
vectors it can be 0 or 1 (0 for the least significant
nibble and 1 for the most significant nibble).

n The number of elements to be operated on.

Discussion

The function RL?bXor3() performs an element-wise logical XOR of the
first n elements of a source vector srcA[i] with the first n elements of
another vector srcB[i] (where 0 <= i < n).  The results of the operation
are stored in dst[i].  Each pair of elements is bit-wise XORed.
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bOr2
ORs the elements of two
vectors.

void RLbbOr2(const unsigned char *src, unsigned char
*dst, int srcStartPos, int dstStartPos, int n);

/* bit vectors */

void RLnbOr2(const unsigned char *src, unsigned char
*dst, int srcStartPos, int dstStartPos, int n);

/* 4-bit nibble vectors */

void RLybOr2(const unsigned char *src, unsigned char
*dst, int n);

/* unsigned byte vectors */

void RLwbOr2(const short int *src, short int *dst, int
n);

/* 16-bit integer vectors */

src Pointer to the vector to be bitwise ORed with
elements of dst[i].

dst Pointer to the vector dst[i] which stores the
results of the OR operation src[i] OR dst[i].

srcStartPos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
source vector.  For bit vectors this value can be 0
through 7 (0 for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
can be 0 or 1 (0 for the least significant nibble
and 1 for the most significant nibble).

dstStartPos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
destination vector.  For bit vectors this value can
be 0 through 7 (0 for the least significant bit and
7 for the most significant bit) and for nibble
vectors it can be 0 or 1 (0 for the least significant
nibble and 1 for the most significant nibble).
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n The number of elements to be operated on.

Discussion

The function RL?bOr2() performs an element-wise logical OR of the first
n elements of a source vector src[i] with the first n elements of a
destination vector dst[i] (where 0 <= i < n).  The results are stored in
dst[i].  Each pair of elements is bit-wise ORed.
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bOr2s
ORs the elements of a
vector with a scalar
value.

void RLnbOr2s(const unsigned char val, unsigned char
*dst, int startPos, int n);

/* 4-bit nibble vectors */

void RLybOr2s(const unsigned char val, unsigned char
*dst, int n);

/* unsigned byte vectors */

void RLwbOr2s(const short int val, short int *dst, int
n);

/* 16-bit integer vectors */

val The scalar which is ORed with each vector
element.

dst Pointer to the vector dst[i] which stores the
results of the OR operation dst[i] OR val.

startPos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
vector.  For bit vectors this value can be 0
through 7 (0 for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
can be 0 or 1 (0 for the least significant nibble
and 1 for the most significant nibble).

n The number of elements to be operated on.

Discussion

The function RL?bOr2s() performs an element-wise logical OR of the
scalar val with the first n elements of a destination vector dst[i] (where
0 <= i < n).  The results are  stored in dst[i].  The scalar is bit-wise
ORed with each element of the vector.
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bOr3
ORs the elements of two
vectors and stores the
result in a third vector.

void RLbbOr3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int srcStartPos, int
dstStartPos, int n);

/* bit vectors */

void RLnbOr3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int srcStartPos, int
dstStartPos, int n);

/* 4-bit nibble vectors */

void RLybOr3(const unsigned char *srcA, const unsigned
char *srcB, unsigned char *dst, int n);

/* unsigned byte vectors */

void RLwbOr3(const short int *srcA, const short int
*srcB, short int *dst, int n);

/* 16-bit integer vectors */

srcA, srcB Pointers to the vectors whose elements are to be
bitwise ORed.

dst Pointer to the vector dst[i] which stores the
results of the OR operation srcA[i] OR srcB[i].

srcStartPos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
source vector.  For bit vectors this value can be 0
through 7 (0 for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
can be 0 or 1 (0 for the least significant nibble
and 1 for the most significant nibble).

dstStartPos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
destination vector.  For bit vectors this value can
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be 0 through 7 (0 for the least significant bit and
7 for the most significant bit) and for nibble
vectors it can be 0 or 1 (0 for the least significant
nibble and 1 for the most significant nibble).

n The number of elements to be operated on.

Discussion

The function RL?bOr3() performs an element-wise logical OR of the first
n elements of a source vector srcA[i] with the first n elements of another
vector srcB[i] (where 0 <= i < n).  The results are stored in dst[i].
Each pair of elements is bit-wise ORed.
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bNot
Performs a logical NOT
of the elements of a
vector.

void RLbbNot(unsigned char *dst, int startPos, int n);
/* bit vectors */

void RLnbNot(unsigned char *dst, int startPos, int n);
/* 4-bit nibble vectors */

void RLybNot(unsigned char *dst, int n);
/* unsigned byte vectors */

void RLwbNot(short int *dst, int n);
/* 16-bit integer vectors */

dst Pointer to the vector dst[i] which stores the
results of the logical operation NOT dst[i].

startPos For packed bit and nibble vectors, indicates the
position of the element within the first byte of the
vector.  For bit vectors this value can be 0
through 7 (0 for the least significant bit and 7 for
the most significant bit) and for nibble vectors it
can be 0 or 1 (0 for the least significant nibble
and 1 for the most significant nibble).

n The number of elements to be operated on.

Discussion

The function RL?bNot() performs a bit-wise logical NOT of the first n
elements of the vector dst[i] (where 0 <= i < n).  The results of the
operation are stored in the vector dst[i].
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The functions described in this chapter perform signal processing.  The
following signal processing tasks are supported.

• Windowing (Bartlett, Hamming, etc.)
• Fast Fourier Transform (FFT)
• Signal Pre-emphasis
• Cepstral Analysis

Windowing Functions

This section describes several of the windowing functions commonly used
in digital signal processing.  Windowing refers to the weighting applied to
the individual points in the N-point signal frame.  It is specified by a
transfer function of the form h(n)  = f (n)  where f  is a function of n.  For a
speech signal of a given window length (that is, n) it is usually desirable to
have a wide passband and a large attenuation outside the passband.  The
windows listed in Table 4-1 are supported:
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Table 4-1 Window Transfer Functions

Window Name Window Transfer Function

Hamming h(n) = 0.54 - 0.46 * cos(2*pi*n/(N-1)) 0 <= n <= N-1
        = 0 otherwise

Hann h(n) = 0.5 - 0.5*cos(2*pi*n/(N-1)) 0 <= n <= N-1
        = 0 otherwise

Bartlett (triangle) h(n) = 2n/(N-1) 0 <= n <= (N-1)/2
       = 2 - 2n/(N-1) (N-1)/2 < n <= N-1
       = 0 otherwise

Blackman h(n) = 0.42 - 0.5*cos(2*pi*n/(N-1))
            + 0.08*cos(4*pi*n/(N-1)) 0 <= n <= N-1
       = 0 otherwise

Example 4-1 shows the code for windowing a signal and taking its FFT.

Example 4-1 Window and FFT a Single Frame of a Signal

/* Window and FFT a single frame of a signal.
 * Note that output size = N/2 + 2 where N is the input size
 * The output of the FFT is in conjugate-symmetric format (see under
 */ “Fast Fourier Transform”.

float xTime[256];
SCplx xFreq[128];

/* Insert code here to put time-domain samples in xTime */

RLsWinHamming(xTime, 128);
RLsRealFftNip(xTime, xFreq, 7, RL_FORWARD);

The windowing functions save the window coefficients internally. Thus,
the window coefficients do not have to be computed every time the
function is called. However, the coefficients depend on the input size so
they need to be recomputed whenver the input size changes. If the same
windowing function needs to be called for different sized inputs, then it is
better to first calculate the window by calling one of the windowing
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functions (RL?WinHamming() , for example) on a vector with all elements
set to 1.0. This vector can then be multiplied with the input signal vector
to get the windowed signal vector.

WinBartlett
Multiplies a vector by a
Bartlett windowing
function.

void RLwWinBartlett(short int * vect , int n, int
doScaleOutput , int * scaleFactor );

/* 16-bit integer vector */

void RLsWinBartlett(float * vect , int n);
/* single precision; real vector */

vect Pointer to the vector to be multiplied by the
chosen windowing function.

n The length of the vector vect[n] .

doScaleOutput , Refer to “Integer Scaling” in Chapter 1.
scaleFactor

Discussion

The function RL?WinBartlett()  multiplies a vector by the Bartlett
(triangle) window.  To obtain the window samples themselves, set all of
the elements of the vector vect[n]  to unity.
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WinBlackman
Multiplies a vector by a
Blackman windowing
function.

void RLwWinBlackman(short int * vect , int n, int
doScaleOutput , int * scaleFactor );

/* 16-bit integer vector */

void RLsWinBlackman(float * vect , int n);
/* single precision; real vector */

vect Pointer to the vector to be multiplied by the
chosen windowing function.

n The length of the vector vect[n] .

doScaleOutput , Refer to “Integer Scaling” in Chapter 1.
scaleFactor

Discussion

The function RL?WinBlackman()  multiplies a vector by the Blackman
window.  To obtain the window samples themselves, set all of the elements
of the vector vect[n]  to unity.
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WinHamming
Multiplies a vector by a
Hamming windowing
function.

void RLwWinHamming(short int * vect , int n, int
doScaleOutput , int * scaleFactor );

/* 16-bit integer vector */

void RLsWinHamming(float * vect , int n);
/* single precision; real vector */

vect Pointer to the vector to be multiplied by the
chosen windowing function.

n The length of the vector vect[n] .

doScaleOutput , Refer to “Integer Scaling” in Chapter 1.
scaleFactor

Discussion

The function RL?WinHamming()  multiplies a vector by the Hamming
window.  To obtain the window samples themselves, set all of the elements
of the vector vect[n]  to unity.
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WinHann
Multiplies a vector by a
Hann windowing
function.

void RLwWinHann(short int * vect , int n, int
doScaleOutput , int * scaleFactor );

/* 16-bit integer vector */

void RLsWinHann(float * vect , int n);
/* single precision; real vector */

vect Pointer to the vector to be multiplied by the
chosen windowing function.

n The length of the vector vect[n] .

doScaleOutput , Refer to “Integer Scaling” in Chapter 1.
scaleFactor

Discussion

The function RL?WinHann()  multiplies a vector by the Hann window.  To
obtain the window samples themselves, set all of the elements of the vector
vect[n]  to unity.
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FreeWinTbls
Frees all internal
memory allocated by
windowing functions.

void RLwFreeWinHammingTbls (void);
void RLsFreeWinHammingTbls (void);
void RLwFreeWinHanningTbls (void);
void RLsFreeWinHammingTbls (void);
void RLwFreeWinBlackmanTbls (void);
void RLsFreeWinBlackmanTbls (void);
void RLwFreeWinBartlettTbls (void);
void RLsFreeWinBartlettTbls (void);

Discussion

The function RL?FreeWin..Tbls()  frees all internal memory that was
allocated for windowing transfer function tables during windowing
evaluations.
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Fast Fourier Transforms

This section describes the functions which compute the Fast Fourier
Transform (FFT). The minimal complete set of FFT functions for float and
16-bit integer data is provided. FFT functions allocate internal memory for
twiddle factors and bit-reversed indices. The function for deallocating
internal memory dedicated to FFTs is provided.

Format Descriptions

The input and output of the complex-valued FFT are formatted as a vector
of type WCplx (for 16-bit integer-valued inputs) and SCplx  (for floating-
point valued inputs). Functions are provided in the library to obtain the
magnitude, power spectrum, log magnitude or log-power spectrum of the
complex output.

The C type definitions for WCplx and SCplx  are as follows:

typedef struct _WCplx {
short int re;
short int im;

} WCplx;

typedef struct _SCplx {
float re;
float im;

} SCplx;

The input of the real-valued FFT is a vector of type short int  (for 16-bit
integer-valued inputs) and float  (for floating-point valued inputs). If
complex values y[i] , i=0,...,n, n=2 order  are the output of a real-valued
FFT, then y[0] , y[n/2]  are real, and y[i]  and y[n-i], i=0,.,n/2-1

are complex-conjugate. The result of a real-valued FFT is stored in a real
vector of size n in the following order (complex-conjugate format):

0 1 2 3 ... n-2 n-1

y[0] y[n/2] y[1].re y[1].im ... y[n/2-1].re y[n/2-1].im

For order=0  a vector in complex-conjugate format contains one element.
This format coincides with the PERM format of the NSP library. If the
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float  vector samps contains the real-valued FFT output in complex-
conjugate format, other outputs can be computed as follows:

Csamps = (SCplx*)samps;
Csamps[n/2].re = Csamps[0].im;
Csamps[n/2].im = Csamps[0].im = (float)0.0;
for (i=1; i<n/2; i++) {

Csamps[n-i].re = Csamps[i].re;
Csamps[n-i].im = -Csamps[i].im;

} /* for */

The input of the complex-conjugate FFT is a vector of type short  int

(for 16-bit integer-valued inputs) and float  (for floating-point valued
inputs) in complex-conjugate format. The output is a vector of the same
length.
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Fft
Computes the forward
or inverse Fast Fourier
Transform (FFT) of a
complex signal in-place.

void RLvFft (WCplx * samps, int order , int flags, int
doScaleOutput, int  *scaleFactor );

/* In-place transform for 16-bit integer complex
       vector. Computes the 16-bit integer complex
       output */

void RLcFft (SCplx * samps, int order , int flags );
/* In-place transform for single-precision complex

       vector. Computes the single-precision complex
       output */

samps Input vector for in-place transform. The output is
written to the same vector.

order  The size of the transform expressed as a power of
2. The length of samps is expected to be 2order .

flags Options for the transform. The following options
are currently supported:

RL_FORWARD Forward transform

RL_INVERSE Inverse transform

RL_INVERSE_NOSCALE Inverse transform
without scaling (that is, the transform output is
not multiplied by 1/N  where N is the length of
transform).

RL_FAST Call the faster but
lower accuracy FFT code. Only for  integer FFT
functions.

doScaleOutput , Refer to “Integer Scaling” in Chapter 1.
scaleFactor
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Discussion

The function RL?Fft()  performs a Fast Fourier Transform (FFT) on the
complex input vector samps.  The computation is done in-place and the
complex output vector is written back to samps. Internally, a radix-4
algorithm is used.
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FftNip
Computes the forward
or inverse Fast Fourier
Transform (FFT) of a
complex signal not-in-
place.

void RLvFftNip (const WCplx *inSamps , WCplx *outSamps ,
int order , int flags, int doScaleOutput, int
*scaleFactor );

/* Not-in-place transform for 16-bit integer complex
      vector. Computes the 16-bit integer complex
      output */

void RLcFftNip (const SCplx *inS amps, SCplx *outSamps,
int order , int flags );

/* Not-in-place transform for single-precision complex
       vector. Computes the single-precision complex
       output */

inSamps Input vector for not-in-place transform.

outSamps Output vector for not-in-place transform.

order  The size of the transform expressed as a power of
2.  The length of the input and output vectors is
expected to be 2order .

flags Options for the transform. The following options
are currently supported:

RL_FORWARD Forward transform

RL_INVERSE Inverse transform

RL_INVERSE_NOSCALE Inverse transform
without scaling (that is, the transform output is
not multiplied by 1/N  where N is the length of
transform).



Signal Processing

4-13

4
 RL_FAST Call the faster but

lower accuracy FFT code. Only for  integer FFT
functions.

doScaleOutput , Refer to “Integer Scaling” in Chapter 1.
scaleFactor

Discussion

The function RL?FftNip()  performs a Fast Fourier Transform (FFT) on
the complex input vector inSamps .  The complex output vector is written
to outSamps . Internally, a radix-4 algorithm is used.
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RealFft
Computes the forward
or inverse Fast Fourier
Transform (FFT) of an
integer- or real-valued
signal in-place.

void RLwRealFft (short int * samps, int order , int flags ,
int doScaleOutput , int * scaleFactor );

/* In-place transform for 16-bit integer vector.
       Computes the 16-bit integer output vector in
       complex-conjugate format */

void RLsRealFft (float * samps, int order , int flags);
/* In-place transform for single-precision real

       vector. Computes the single-precision output
       vector in complex-conjugate format */

samps Input vector for in-place transform.  The output
is written to the same vector.

order The size of the transform expressed as a power of
2.  The length of samps is expected to be 2order .

flags Options for the transform. The following options
are currently supported:

RL_FORWARD Forward transform

RL_INVERSE Inverse transform

RL_INVERSE_NOSCALE  Inverse transform
without scaling (that is, the transform output is
not multiplied by 1/N,  where N is the length of
the transform).

RL_FAST Call the faster but
lower accuracy FFT code. Only for  integer FFT
functions.
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doScaleOutput , Refer to “Integer Scaling” in Chapter 1.
scaleFactor

Discussion

The function RL?RealFft()  performs a Fast Fourier Transform (FFT) on
the real input vector samps. The computation is done in-place and the
output vector in complex-conjugated format is written back to samps.
Internally, a radix-4 algorithm is used.
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RealFftNip
Computes the forward
or inverse Fast Fourier
Transform (FFT) of an
integer- or real-valued
signal not-in-place.

void RLwRealFftNip (const short int * inSamps , short int
* outSamps , int order , int flags , int doScaleOutput , int
* scaleFactor );

/* Not-in-place transform for 16-bit integer vector.
       Computes the 16 bit integer output vector in
       complex-conjugated format */

void RLsRealFftNip (const float * inSamps , float
* outSamps , int order , int flags);

/* Not-in-place transform for single-precision real
       vector. Computes the single-precision output
       vector in complex-conjugated format */

inSamps Input vector for not-in-place transform.

outSamps Output vector for not-in-place transform.

order The size of the transform expressed as a power of
2. The length of the input and output vectors is
expected to be 2order .

flags Options for the transform. The following options
are currently supported:

RL_FORWARD Forward transform

RL_INVERSE Inverse transform

RL_INVERSE_NOSCALE  Inverse transform
without scaling (that is, the transform output is
not multiplied by 1/N,  where N is the length of
the transform).
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RL_FAST Call the faster but
lower accuracy FFT code. Only for  integer FFT
functions.

doScaleOutput , Refer to “Integer Scaling” in Chapter 1.
scaleFactor

Discussion

The function RL?RealFftNip()  performs a Fast Fourier Transform (FFT)
on the real input vector inSamps .  The output vector in complex-conjugate
format is written to outSamps . Internally, a radix-4 algorithm is used.

In Example 4-2 the RLsRealFft()  function is used to calculate the FFT
of a 128-point real input signal.

Example 4-2 Using RLsRealFft() to Perform the FFT

/* Calculate the FFT of a 128-point real input signal
 * Input signal is in x, output is also in x
 * Order of the FFT is 7 (log-base-2 of 128).
 * Output size is N/2 float values, because only half
 * the FFT is generated (the FFT of a real signal being
 * conjugate-symmetric). The FFT is done in-place.
 */

float x[128];

/* Insert code here to put the 128 samples in x */
RLsRealFft(x, 7, RL_FORWARD);
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CcsFft
Computes the forward
or inverse Fast Fourier
Transform (FFT) of an
integer- or real-valued
complex-conjugated
signal in-place.

void RLwCcsFft (short int * samps, int order , int flags ,
int doScaleOutput , int * scaleFactor );

/* In-place transform for 16-bit integer vector in
       complex-conjugated format. Computes the 16-bit
       integer output vector */

void RLsCcsFft (float * samps, int order , int flags);
/* In-place transform for single-precision real vector

       in complex-conjugated format. Computes the single-
       precision output vector */

samps Input vector for in-place transform. The output is
written to the same vector.

order The size of the transform expressed as a power of
2.  The length of samps is expected to be 2order .

flags Options for the transform. The following options
are currently supported:

RL_FORWARD Forward transform

RL_INVERSE Inverse transform

RL_INVERSE_NOSCALE  Inverse transform
without scaling (that is, the transform output is
not multiplied by 1/N,  where N is the length of
the transform).

RL_FAST Call the faster but
lower accuracy FFT code. Only for  integer FFT
functions.
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doScaleOutput , Refer to “Integer Scaling” in Chapter 1.
scaleFactor

Discussion

The function RL?CcsFft()  performs a Fast Fourier Transform (FFT) on
samps, the input vector in complex-conjugate format.  The computation is
done in-place and the output real vector is written back to samps.
Internally, a radix-4 algorithm is used.
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CcsFftNip
Computes the forward
or inverse Fast Fourier
Transform (FFT) of an
integer- or real-valued
complex-conjugated
signal not-in-place.

void RLwCcsFftNip (const short int * inSamps , short int
* outSamps , int order , int flags , int doScaleOutput , int
* scaleFactor );

/* Not-in-place transform for 16-bit integer vector in
       complex-conjugated format. Computes the 16-bit
       integer output vector */

void RLsCcsFftNip (const float * inSamps , float * outSamps ,
int order , int flags);

/* Not-in-place transform for single-precision real
       vector in complex-conjugated format. Computes the
       single-precision output vector */

inSamps Input vector for not-in-place transform.

outSamps Output vector for not-in-place transform.

order The size of the transform expressed as a power of
2.  The length of the input and output vectors is
expected to be 2order .

flags Options for the transform. The following options
are currently supported:

RL_FORWARD Forward transform

RL_INVERSE Inverse transform

RL_INVERSE_NOSCALE  Inverse transform
without scaling (that is, the transform output is
not multiplied by 1/N,  where N is the length of
the transform).
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RL_FAST Call the faster but
lower accuracy FFT code. Only for  integer FFT
functions.

doScaleOutput , Refer to “Integer Scaling” in Chapter 1.
scaleFactor

Discussion

The function RL?CcsFftNip()  performs a Fast Fourier Transform (FFT)
on inSamps , the input vector in complex-conjugate format. The output
real vector is written to outSamps . Internally, a radix-4 algorithm is used.
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FreeFftTbls
Frees all internal
memory allocated for
FFT computation.

void RLFreeFftTbls (void);

Discussion

The function RLFreeFftTbls()  frees all internal memory that was
allocated for twiddle factors and bit-reversed indices tables during FFT
evaluation.
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Speech Specific Signal Processing

The functions described in this section perform signal processing and
feature extraction operations that are commonly done on speech signals.
These functions are

• Signal pre-emphasis
• Cepstral analysis

Signal Pre-emphasis

The spectrum of voiced speech normally exhibits an overall -6dB/octave
roll-off due to the effects of lip radiation and the spectral trend of the
voiced excitation source.  Pre-emphasis refers to the compensation for this
roll-off by preprocessing the signal to give it a +6dB/octave boost in the
appropriate spectral range.
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Preemphasize
Pre-emphasizes the
signal using a first
order filter with a
transfer function H(z) =
1 - az-1 .

void RLwPreemphasize(short int * vect , float a, int n, int
doScaleOutput , int * scaleFactor );

/* 16-bit integer vectors */

void RLsPreemphasize(float * vect , float a, int n);
/* single precision; real vectors */

vect The input vector that needs pre-emphasis.

a The coefficient used for the first order transfer
function.  Usually a value of 0.95 is chosen for
speech signals.

n The length of the input vector vect[n] .

doScaleOutput , Refer to “Integer Scaling” in Chapter 1.
scaleFactor

Discussion

The function RLb?Preemphasize()  pre-emphasizes the input signal
contained in the vector vect[n] .  The resulting values are stored back into
the same vector.  A high-pass filtering for pre-emphasis is implemented by
the difference equation:

y( n) = x( n) - a * x( n-1)

where x  and y  are the input and output respectively.

In z-transform notation, the transform function can be written as:

H(z) = Y(z)/X(z) = 1 - az -1

Usually a value of 0.95 is used for the value of a.
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FreePreemphasizeTbls
Frees all internal
memory allocated by the
RLb?Preemphasize
functions.

void RLFreePreemphasizeTbls (void);

Discussion

The function RLFreePreemphasizeTbls()  frees all internal memory that
was allocated by RLb?Preemphasize functions.
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Cepstral Analysis

Cepstral analysis (also known as cepstral truncation) is a technique for
removing the pitch ripple from the high resolution speech spectra.  Voiced
speech can be modeled as the convolution of the vocal tract response with
the excitation source.  Let x( n)  represent the voiced speech signal, h( n)

represent the vocal tract response, and p( n)  represent the excitation signal.
Then x( n)  can be written as follows:

x(n) = p(n) * h(n)

where “* ” is the convolution operator.

NOTE.  Note that this equation does not take lip radiation effects into
account.

The goal of cepstral analysis for speech feature extraction is to obtain the
vocal tract response after removing the pitch ripple.  One straightforward
way of doing this is to filter the log-magnitude (or log-energy) of the
signal with an inverse FFT.  This is followed by truncation of the
coefficients beyond the pitch frequency and then a forward FFT.
However, a more common variation is cepstral smoothing using a Discrete
Cosine Transform (DCT) with the coefficients placed on a mel-scale.  In
this library, the Mel-frequency Cepstral Coefficients (MFCC) are
implemented using the DCT of filter-banked FFT spectra.
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CepstralMFCC
Compute mel-scaled
cepstral coefficients by
cepstral smoothing with
a DCT (Discrete Cosine
Transform) on
triangular bandpass
filter bank outputs.

void RLwCepstralMFCC(BOOL doFft , short int * vect ,
wMelFilters_t * filters , short int * ceps , int nceps , int
doScaleOutput , int * scaleFactor );

/* 16-bit integer vectors */

void RLsCepstralMFCC(BOOL doFft , float * vect ,
sMelFilters_t * filters , float * ceps , int nceps );

/* single precision; real vectors */

doFft A boolean.  If true , an FFT followed by a log-
magnitude operation is performed on the input
vector.  If false , it is assumed that the input
vector is the log-magnitude (or log-power-
spectrum) of the FFT of some signal  and at least
n/2  + 1 (where n is the size of the FFT) elements
are expected in the input vector.

vect The input vector.

filters Pointer to the ?MelFilters_t  data structure
(created by a call to RL?MFCCInit() ) containing
the filter specifications.

ceps The output vector in which the extracted MFCC
cepstral coefficients will be stored.

nceps The number of cepstral MFCC cepstral
coefficients to be extracted.
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doScaleOutput , Refer to “Integer Scaling” in Chapter 1.
scaleFactor

Discussion

The function RL?CepstralMFCC()  computes the Mel-Frequency Cepstral
Coefficients (MFCC).  An FFT of the input signal is taken and the
logarithm (base 10) of its magnitude is then filtered by a filter bank of mel-
spaced triangular bandpass filters.  The filters are equally spaced on a mel-
scale defined by:

Mel( f ) = 2595log
10
(1 + f/700)

where f  is the frequency on the linear scale.

The MFCC, using a Discrete Cosine Transform (DCT) of the filter outputs,
are then computed as

MFCC
i
 = Σ

k
 X

k
 cos(i(k - 0.5)  π/20), i=1,2,..M, k = 1,..K

where X
k
 is the log-energy output of the k th filter, M = nceps  and K = the

number of bandpass filters.
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MFCCInit
Creates and initializes
the data structure
containing the
triangular band pass
filter specifications and
weights.

wMelFilters_t *RLwMFCCInit(int order , int nBandPass , int
startFreq , int endFreq , int samplingFreq , BOOL
doLinearInitially , int nLinearFilters , int
maxLinearFreq );

/* 16-bit integer vectors */

sMelFilters_t *RLsMFCCInit(int order , int nBandPass , int
startFreq , int endFreq , int samplingFreq , BOOL
doLinearInitially , int nLinearFilters , int
maxLinearFreq );

/* single precision; real vectors */

order The order (expressed as a power of 2) of the
input vector (and also the order of the FFT) that
will be passed to the function
RLsCepstralMFCC() .

nBandPass The number of triangular bandpass filters to be
created.

startFreq The start frequency of the first band pass filter.

endFreq The end frequency of the last band pass filter.

samplingFreq The sampling frequency of the input (speech
signal) vector that will be passed to the function
RLsCepstralMFCC()  along with the filter data
structure.
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doLinearInitially A boolean.  If true , the function creates the first

few band pass filters uniformly placed on a linear
scale.  If false , all filters are uniformly placed
on a mel scale.

nLinearFilters The number of filters to be placed on a linear
scale if argument doLinearInitially  is true .

maxLinearFreq The end frequency of the last linearly placed
filter if argument doLinearInitially  is true .

Discussion

The function RL?MFCCInit()  is called once to construct and initialize the
data structure ?MelFilters_t .  The ?MelFilters_t  structure is required
to extract the MFCC cepstral coefficients by calls to the function
RL?CepstralMFCC() .  A filter bank of nBandPass  mel-spaced triangular
bandpass filters is created.  The filters are equally spaced on a mel-scale
(starting from the frequency startFreq  and ending at the frequency
endFreq ) defined by:

Mel( f ) = 2595log
10
(1 + f /700)

where f  is the frequency on the linear scale.

When doLinearInitially  is true , the first nLinearFilters  are placed
uniformly on a linear frequency scale starting from startFreq  and ending
at maxLinearFreq .  All of the other filters are placed uniformly on a mel-
scale.

The ?MelFilters_t  data structure contains precomputed weights and
data corresponding to the filter/FFT-coefficient combinations, thus
reducing the computational load of the function RL?CepstralMFCC() .

The function returns a pointer to the ?MelFilters_t structure.
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FreeMFCCFilters
Destroys and reclaims
the storage associated
with the filters data
structure.

void RLwFreeMFCCFilters(wMelFilters_t * filters );
/* 16-bit integer vectors */

void RLsFreeMFCCFilters(sMelFilters_t * filters );
/* single precision; real vectors */

filters A pointer to the data structure ?MelFilters_t .

Discussion

The function RL?FreeMFCCFilters()  is called to destroy and reclaim the
storage space associated with the data structure ?MelFilters_t .
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Example 4-3 shows the code for extracting the MFCC coefficients from a
single input signal frame.

Example 4-3  Extraction of MFCC from a single input signal frame

/* Compute the MFCC from a 128-point signal using 20 bandpass
 * filters in the frequency range 0 to 8Khz. Ten filters are
 * placed linearly up to a frequency of 1Khz and the remaining
 * filters are placed on a mel-scale. The sampling frequency of
 * the input signal is 16Khz.
 */

float x[128]; // imput signal
float x[10]; // the MFCC coefficients
sMelFilters_t *filters; // the filters structure

/* Insert code here to put the 128 samples in x */

/* first initialize the filters */
filters = RLsMFCCInit(7, 20, 0, 8000, 16000, TRUE, 10, 1000);

/* Now extract 10 MFCC coefficients using the filter structure.
RLsCepstralMFCC(TRUE, x, filters, ceps, 10);

/* Delete the filters structure to reclaim memory */
RLsFreeMFCCFilters(filters);
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The functions described in this chapter compute similarity measures and
probability density functions.  Sometimes these basic functions comprise
an entire recognition system, but more often they are components of a
larger recognition system.  The similarity measures include dot products
and Euclidean distances.  Gaussian mixtures and multi-layer perceptrons
are non-linear functions of these similarity measures which are used to
estimate probability density functions (pdfs).  One particular type of
probability density which is used commonly with hidden Markov models
in speech recognition is referred to as an observation likelihood.

Similarity Measures

This section describes the functions in the Intel Recognition Primitives
Library which compute similarity measures (also known as distance
metrics).
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DotP
Computes the dot
product (inner product)
of two vectors.

int RLwDotP(short int *vect1, short int *vect2, int n,
int doScaleOutput, int *scaleFactor);

/* 16-bit integer vectors */

double RLsDotP(float *vect1, float *vect2, int n);
/* single precision; real vectors */

vect1, vect2 The vectors for which the dot product is
computed.

n The length of the two vectors vect1[n] and
vect2[n].

doScaleOutput, Refer to “Integer Scaling” in Chapter 1.
scaleFactor

Discussion

The function RL?DotP() returns the dot product of the two vectors
vect1[n] and vect2[n].  The dot product is defined as:

DotP = Σi (vect1i * vect2i)

where the summation is carried out over each component of the vectors.
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L1Norm
Computes the L1Norm
(city-block or
Manhattan Distance)
between two vectors.

int RLwL1Norm(short int *vect1, short int *vect2, int n,
int doScaleOutput, int *scaleFactor);

/* 16-bit integer vectors */

double RLsL1Norm(float *vect1, float *vect2, int n);
/* single precision; real vectors */

vect1, vect2 The vectors for which the L1Norm is computed.

n The length of the two vectors vect1[n] and
vect2[n].

doScaleOutput, Refer to “Integer Scaling” in Chapter 1.
scaleFactor

Discussion

The function RL?L1Norm() returns the L1Norm (city-block distance)
between the two vectors vect1[n] and vect2[n].  The L1Norm is
defined as:

L1Norm = Σi abs(vect1i - vect2i)

where the summation is carried out over each component of the vectors.
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L2Norm
Computes the L2Norm
(Euclidean distance)
between two vectors.

int RLwL2Norm(short int *vect1, short int *vect2, int n,
Bool doSquareRoot, int doScaleOutput, int *scaleFactor);

/* 16-bit integer vectors */

double RLsL2Norm(float *vect1, float *vect2, int n, Bool
doSquareRoot);

/* single precision real vectors */

vect1, vect2 The two vectors for which the L2Norm is
computed.

n The length of the vectors vect1[n] and
vect2[n].

doSquareRoot A boolean. If true, the square root of the sum is
of squares is calculated and returned.

doScaleOutput, Refer to “Integer Scaling” in Chapter 1.
scaleFactor

Discussion

The function RL?L2Norm() returns the L2Norm (Euclidean distance)
between the two vectors vect1[n] and vect2[n].  The L2Norm is
defined as:

L2Norm = sqrt(Σi (vect1i - vect2i)
2 )

where the summation is carried out over each component of the vectors.
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Mahalanobis
Computes the
Mahalanobis distance
(covariance weighted
distance) between two
vectors.

int RLwMahalanobis(short int *vect1, short int *vect2,
short int **inverseCovarianceMatrix, int n, Bool
doSquareRoot, int doScaleOutput, int *scaleFactor);

/* 16-bit integer vectors; full covariance matrix */

int RLwMahalanobisD(short int *vect1, short int *vect2,
short int *reciprocalVariance, int n, Bool doSquareRoot,
int doScaleOutput, int *scaleFactor);

/* 16-bit integer vectors; diagonal covariance matrix 
   (uses a vector) */

double RLsMahalanobis(float *vect1, float *vect2, float
**inverseCovarianceMatrix, int n, Bool doSquareRoot,);

/* Single precision real vectors, full covariance
    matrix */

double RLsMahalanobisD(float *vect1, float *vect2, float
*reciprocalVariance, int n, Bool doSquareRoot,);

/* Single precision real vectors, diagonal covariance 
   matrix (uses a vector) */

vect1, vect2 The two vectors for which the
Mahalanobis distance is computed.

inverseCovarianceMatrix The inverted covariance matrix for the
domain of the vectors vect1[n] and
vect2[n].

reciprocalVariance A vector representing the reciprocals of
the leading diagonal of the covariance
matrix of the domain of the vectors
vect1[n] and vect2[n].



Intel Recognition Primitives Library Reference Manual

5-6

5
n The length of the two vectors vect1[n]

and vect2[n].  The matrix Cov[n,n] is
a square matrix of size n * n and
dCov[n] is a vector of length n.

doSquareRoot Tell the function to take square root of
the sum squares if true.

doScaleOutput, scaleFactor Refer to “Integer Scaling” in Chapter 1.

Discussion

The function RL?Mahalanobis?() returns the Mahalanobis (covariance
weighted distance) between the two vectors vect1[n] and vect2[n].

The Mahalanobis distance is defined as:

MahalanobisDist = sqrt(Σi Σj (vect1i - vect2i) *
inverseCovarianceMatrixij * (vect1j - vect2j))

where the summation is carried out over each component of the vectors.

When a diagonal covariance matrix is used, the Mahalanobis distance can
be defined as:

MahalanobisDist = sqrt(Σi (vect1i - vect2i)
2 *

reciprocalVariancei)

where the summation is carried out over each component of the vectors.
The vector reciprocalVariance[n] now represents the reciprocals of
the leading diagonal of the covariance matrix.
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Observation Likelihood Estimates

This section describes functions that compute observation likelihood
estimates.  Multi-layer perceptron (MLP) evaluation and Gaussian
mixtures are supported.

Gaussian Mixtures

Gaussian mixtures are implemented in the framework of a server model.
The application initially sets up a Gaussian mixture server by calling the
function RL?InitGaussMixServer().  The application should then pass
all of the relevant information for setting up the mixtures to
RL?InitGaussMixServer().  Subsequently, for each input vector, the
mixture is evaluated by calling the function RL?EvalGaussMix().  This
scheme eliminates the overhead of passing all the required arguments
whenever a mixture needs to be evaluated.  The following sections
describe the mathematics involved in the computation of the Gaussian
mixtures.
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InitGaussMixServer
Initializes a Gaussian
mixture server.

wGaussMixServer_t RLwInitGaussMixServer(short int
*weightVect, short int **meanVect, short int
***inverseCov, short int **inverseCovD, int n, int
nGauss, BOOL useExpTable, int distScale);

/* 16-bit integer vectors */

sGaussMixServer_t RLsInitGaussMixServer(float
*weightVect, float **meanVect, float ***inverseCov, float
**inverseCovD, int n, int nGauss, BOOL useExpTable);

/* Single precision; floating point vectors */

weightVect The vector (of length nGauss) defining the
weight applied to each Gaussian.

meanVect A table containing nGauss rows where each row
is the mean vector for the corresponding
Gaussian.  Implemented as a vector (length
nGauss) of pointers, one for each mean vector.
Each component of the mean vector contains the
mean for that element position of the vector.

inverseCov A vector of tables, one for each inverse (full)
covariance matrix.  The vector of tables is
implemented as a vector (of length nGauss) of
pointers, one for each inverse covariance matrix
corresponding to each Gaussian.  Each inverse
covariance matrix is implemented as a table.
Either inverseCov  or inverseCovD  should be
NULL.

inverseCovD A table containing nGauss rows where each row
is the leading diagonal of the inverse covariance
matrix for the corresponding Gaussian.
Implemented as a vector (length nGauss) of
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pointers, one for each vector.  Either
inverseCov  or inverseCovD  should be NULL.

n The length of the mean vector.  Each matrix in
inverseCov is a square matrix of size n * n and
each vector in inverseCovD is of length n.

nGauss The number of Gaussians in the mixture.

useExpTable A boolean.  If true, lookup tables are used to
approximate the exponential.  If false, the
exponential is computed accurately using the
math library.  The approximate exponential is
computed as

exp(x) = exp(i) * exp(f)

where i is the integral part of x and f is the
fractional part of x rounded to the third decimal
place.  Lookup tables are used for exp(i) and
exp(f).

While using the lookup table option improves
overall performance,  it should be used with
caution because of the loss of precision (resulting
from the rounding of the fractional part to the
third decimal place).

distScale Scaling factor (expressed as a power of 2) that is
used to normalize the covariance weighted
distance for each Gaussian.  The distance is
multiplied by 2distScale before being exponentiated.
This is done for the integer version of the
function because the mean and covariances
might have been scaled up when represented as
integers.  A negative value should be used for
normalization.  However, a positive value will
also work and will result in scaling up the
computed distance.  Use a value of 0 if no
scaling is to be performed.
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Discussion

The function RL?InitGaussMixServer?()  creates a new Gaussian
mixture server and returns a pointer to a structure ?GaussMixServer

representing the server.  The server architecture eliminates the need for
passing a large number of arguments when evaluating a Gaussian mixture.
Only the input vector and the server structure (obtained by calling this
function) need be passed when evaluating a Gaussian mixture with the
function RL?EvalGaussMix() .  All the arguments that were used to
initialize the mixture can be destroyed to reclaim space (if needed) because
the mixture parameters are stored in an internal format.

The Gaussian mixture computed by this library is a weighted  sum of
Gaussian distributions f (x)  , which can be written as:

f(x) = Σ
i 
W

i
 * exp((x - µ

i
) * Ε

i
 * (x - µ

i
))

where w
i
, µ

i
, and Ε

i
, are the weighting coefficient, mean vector, and inverse

covariance matrix respectively of the i th multi-dimensional Gaussian
distribution.  The argument x  is the multidimensional input vector.

The Gaussian mixture can be evaluated using the function
RL?EvalGaussMix() .
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EvalGaussMix
Evaluates a Gaussian
mixture.

int RLwEvalGaussMix(wGaussMixServer_t * server , short int
* vect , int n, int  doScaleOutput , int  *scaleFactor );

/* 16-bit integer vector */

double RLsEvalGaussMix(sGaussMixServer_t * server , float
* vect , int n);

/* single precision; real vector */

server The pointer to the structure
?GaussMixServer_t  representing the Gaussian
mixture server.  The pointer is obtained by an
initial call to RL?InitGaussMixServer .

vect The input vector for which the Gaussian mixture
is evaluated.

n The length of the input vector vect[n] .

doScaleOutput , Refer to “Integer Scaling” in Chapter 1.  Used
scaleFactor only by the RLwEvalGaussMix()  function.

Discussion

The function RL?EvalGaussMix()  evaluates the Gaussian mixture
identified by server  for the input vector vect[n] .  The evaluated
probability is then returned.
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FreeGaussMixServer
Destroys and releases
the storage space for
one or more Gaussian
mixture servers.

void RLwFreeGaussMixServer(wGaussMixServer_t server);
/* 16-bit integer vector */

void RLsFreeGaussMixServer(sGaussMixServer_t server);
/* single precision; real vector */

server The pointer to the structure
?GaussMixServer_t representing the Gaussian
mixture server.  The pointer is obtained by an
initial call to RL?InitGaussMixServer.

Discussion

The function RL?FreeGaussMixServer() destroys and releases the
storage space for the Gaussian mixture server pointed to by server.
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Example 5-1 shows the code to set up and use a Gaussian Mixture server.

Example 5-1 Setting Up and Using Gaussian Mixtures

/* This code sets up a Gaussian mixture with 5 mixture
 * components for inputs with 128 elements.
 */

float x[128]; // input vector
float weights[5]; // mixture weights
float mean[5][128]; // mean vectors for each Gaussian
float diag[5][128]; // diagonals of inverse covariance

// matrices for each Gaussian
sGaussMixServer_t *server; // Gaussian mixture server struct
double prob; // mixture probability for input x

float *t_mean[5]; // vector of pointers to mean rows
float *t_diag[5]; // vector of pointers to diag rows
int i;

/* Insert code here to initialize x, weights, mean and diag */
/* first initialize the Gaussian mixture server */
for (i=0;i<5;i++) {

t_mean[i] = &mean[i][0];
t_diag[i] = &diag[i][0];

}
server = RLsInitGaussMixServer(weights, t_mean, NULL, t_diag,

128, 5, TRUE);

/* Now compute the mixture probability for the input x */
prob = RLsEvalGaussMix(server, x, 128);

/* Delete the server to reclaim memory*/
RLsFreeGaussMixServer(server);
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Multi-Layer Perceptron

The function described in this section performs feed forward processing
for a multi-layer perceptron (MLP) neural network, sometimes referred to
as a back-propagation network.  The MLP is used extensively in OCR
applications and is beginning to see application in speech recognition
applications.  Facilities for learning are not provided as part of the
Recognition Primitives Library because learning is typically a one-time
event performed during development of the weights for an MLP.

MLPerceptron
Performs multi-layer
feed forward neural
network processing on
an input vector.

void RLwMLPerceptron(int numberOfInputs, int
inputsExponent, short int* input, int numberOfLayers,
int* layerNeuronCounts, int weightsExponent, short int*
weights, short int* output, int doScaleOutput, int*
scaleFactor);

/* 16-bit integer vector */

void RLsMLPerceptron(int numberOfInputs, float* input,
int numberOfLayers, int* layerNeuronCounts, float*
weights, float* output);

/* single precision; real vector */

numberOfInputs Number of elements in the input vector.

inputsExponent A single int value which is the exponent for all
of the inputs.  This argument is used only by the
RLwMLPerceptron() function.  The
RLwMLPerceptron() function treats each input
as a fixed point number where the short int
data passed to it corresponds to the mantissas of
the input values.  The inputsExponent
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parameter corresponds to the common exponent
of the input values.  For example, if the desired
input values are 3.1415 and -26.454, to maintain
the best overall precision inputsExponent
should be set to -10 and the short integers 3217
(0C91H) and -27088 (9630H) stored in the
memory pointed to by input.

input Pointer to the input vector to be processed which
can be made up of short ints or floats
depending on which of the two functions is used.

numberOfLayers The number of layers of neurons in the Multi-
Layer Perceptron.

layerNeuronCounts Pointer to an array of integers which contains the
number of neurons in each layer of the network.

The first value in the array corresponds to the
number of neurons in the layer connected to the
inputs.  The last value corresponds to the number
of outputs the network produces.

weightsExponent A single int value which is the exponent for all
of the weights.  This argument is used only by
the RLwMLPerceptron() function.  The
RLwMLPerceptron() function treats each
weight as a fixed point number where the short
int data passed to it corresponds to the
mantissas of the weight values.  The
weightsExponent parameter corresponds to the
common exponent of the weights.  For example,
if the desired weights  are  3.1415 and -26.454,
to maintain the best overall precision
weightsExponent should be set to -10 and the
short integers 3217 (0C91H) and -27088
(9630H) stored in the memory pointed to by
input.
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weights Pointer to the weights to be used which can be

made up of short ints or floats depending on
which of the two functions is used.  The weights
are ordered in sequence from first input to last,
from first neuron to last, and from first layer to
last.  Thus, the first numberOfInputs weights
will correspond to the connections between the
inputs and the first neuron in the first hidden
layer.  The next numberOfInputs weights will
be the weights for the second neuron, and so on.

output Pointer to where the output vector will be
written.  The output representation for the
RLwMLPerceptron() function is a fixed-point
representation.  The outputs are short ints
scaled as specified by the arguments
doScaleOutput and scaleFactor.

doScaleOutput, Refer to “Integer Scaling” in Chapter 1.  Used
scaleFactor only by the RLwMLPerceptron() function.

Discussion

The RL?MLPerceptron() function  performs multi-layer feed forward
neural network processing on an input vector to produce a vector of
neuron outputs given a set of weights.  The processing is performed for
each neuron in the specified network.  The analytical expression for the
computations done by the RL?MLPerceptron() function is as follows:
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Multi-Layer Perceptron Architecture

Where ui is a component of the input vector, Wij is the ith weight for
neuron j and oj is the output of the jth neuron.  The outputs of one layer
of neurons are the inputs to the next layer of neurons.  This is true for all
layers except  the output layer.

Figure 5-1 Multi-layer Perceptron Architecture
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Vector Quantization and Kohonen Network

In the process of pattern recognition it is common to map a pattern to a
lower dimension space to reduce the computation required for
classification or to improve the generalization capability of a recognition
system.  Vector quantization and the Kohonen network are two techniques
commonly used.

The same computations are done for both vector quantization and a
Kohonen network.  The only difference is in how the weights or codebook
vectors are derived from a set of training patterns.  Since the Recognition
Primitives Library does not support training, only one set of functions is
provided which can be used for both vector quantization and the Kohonen
network.  The Euclidean distances (L2Norms) are computed for an input
vector and a set of weight vectors.  By sorting the Euclidean distances, the
closest vector to the input vector is identified.  This is useful in vector
quantization for finding the codebook vector which best matches the input
vector.  The closest matching vector to the input vector is also useful in
training a Kohonen network.  The functions optionally provide a ranked
list of the indices of the closest matching vectors.

Facilities for learning are not provided as part of the Recognition
Primitives Library because learning is typically a one-time event
performed during development of the weights for a Kohonen network or
during derivation of a set of codebook vectors for vector quantization.
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VQKohonen
Calculates and ranks
the Euclidean distances
between an input vector
and an array of weight
vectors.

void RLwVQKohonen(short int* input, int numberOfInputs,
int numberOfOutputs, short int* weights, int
numberToRank, short int* rankList, int doSquareRoot,
 unsigned int* output, int doScaleOutput, int*
scaleFactor);

/* 16-bit integer vector */

void RLsVQKohonen(float* input, int numberOfInputs, int
numberOfOutputs, float* weights, int numberToRank, short
int* rankList, int doSquareRoot, float* output);

/* single precision; real vector */

input Pointer to the input vector to be processed.

numberOfInputs Number of elements in the input vector.

numberOfOutputs Number of outputs or weight vectors for which
distances are to be calculated.

weights Pointer to the weight matrix to be used.  The
weights are ordered in sequence: first by input
and second by output or weight vector.

numberToRank The number of smallest distances to be ranked.
Zero indicates that no sorting should be done.
Note that the larger this number is, the more
compute time is required.  If numberToRank is
set to zero, no memory needs to be allocated for
rankList.
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rankList Pointer to a list of integer indices, indicating

which numberToRank of the weight vectors are
closest to the input vector.  The index of the
weight vector with the smallest distance appears
first.  For sorting, memory allocation for a full
numberOfOutputs integers must be provided.

doSquareRoot Tells the function to take the square root of the
sum of the differences.  The result is that
Euclidean distances are calculated rather than the
squares of the Euclidean distances.  Substantial
compute time can be saved by not calculating the
square root without impacting the ability to
classify.  Setting doSquareRoot=0 will
eliminate the taking of square roots.  Setting
doSquareRoot=1 corresponds to the calculation
of standard Euclidean distances.

output Pointer to where the output vector of Euclidean
distances should be written.  It is assumed that
enough memory has been allocated by the user.
If doSquareRoot=1 the vector pointed to will
consist of Euclidean distances.  The outputs are
short ints scaled as specified by the arguments
doScaleOutput and scaleFactor.

doScaleOutput Tells the function how to scale the output to fit
into the output data type.  If the inputs utilize the
full range of short ints and no square root is
taken, the outputs will exceed the largest value
that an int can store.  This option flag can be set
to zero to reduce compute time if the user knows
that the output will always fit within an int.  If
turned off, an overflow will occur and no
warning will be given.
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scaleFactor Pointer to an int scale factor which indicates the

power of two the output should be multiplied by
to recover the actual distances or distances
squared.  For example, if the integer value
pointed to is 3 then the outputs should be
multiplied by 23.

Discussion

The function RL?VQKohonen() computes a vector of distances, o, and
stores it in the memory location pointed to by output.  It also sorts the
distances and returns a list of ranked indices in order from smallest to
largest in the memory location pointed to by rankList.

The Euclidean distance computed by the RL?VQKohonen() function can
be described as follows:

( )o u Wj i ij

i

= −∑ 2

where ui is the ith component of the input vector, input[n], and Wij is the
ith component of the jth weight vector.  The array of weight vectors is
pointed to by weights.
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The algorithms described in this chapter are image processing routines
used in optical character recognition (OCR). The functions supported are:

• Bit manipulation
• Image rotation
• Mirror image reflection
• Image copying
• Mask convolution

Pixel Arithmetic and Logical Operations

The functions described in the chapter “Vector Operations” can be used to
manipulate pixel data in images.  These functions implement logical and
arithmetic operations on bit, nibble, and byte vectors.

Image Geometric Transformations

Functions described in this section perform transformations such as
rotation on the image, mirror image reflection, and image copying.
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RotateImage
Rotates an image by a
specified angle.

void RLbRotateImage(const unsigned char **image, unsigned
char **outImage, int angle, int nInRows, int nInCols, int
nOutRows, int nOutCols)

/* binary images */

void RLnRotateImage(const unsigned char **image, unsigned
char **outImage, int angle, int nInRows, int nInCols, int
nOutRows, int nOutCols)

/* 4-bit nibble images */

void RLyRotateImage(const unsigned char **image, unsigned
char **outImage, int angle, int nInRows, int nInCols, int
nOutRows, int nOutCols)

/* unsigned byte images */

void RLtRotateImage(const signed char **image, signed
char **outImage, int angle, int nInRows, int nInCols, int
nOutRows, int nOutCols)

/* signed byte images */

image, outImage The input image and output images respectively.
An image is implemented as a pointer to a vector
of pointers to vectors (one for each row of
pixels).

angle The angle by which the image should be rotated.
The angle should be -90, 90, or 180 degrees.

nInRows, nInCols The number of rows and columns in the input
image.

nOutRows, nOutCols The number of rows and columns in the output
image.
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Discussion

The function RL?RotateImage() rotates the input image image by
angle degrees using the center of the input image as a pivot.  The
resulting rotated image is stored in outImage.  This function could also be
used (by specifying angle = 90) for converting a row-based image (that
is, where the rows are stored as arrays) to a column-based image (that is,
where the columns are stored as arrays).  Horizontal pixel scans are faster
on row-based images and vertical pixel scans are faster on column-based
images.

Example 6-1 shows the code for rotating a binary image by 90 degrees.

Example 6-1 Using RLbRotateImage() to Rotate a Binary Image

/* Rotate a 64 by 128 binary image by 90 degrees */

unsigned char x[64][16]; // input image uses 16 bytes
// per image row for 128 pixels

unsigned char y[128][8]; // output image uses 8 bytes
// per image row for 64 pixels

unsigned char *tx[64]; // vector of pointers to x rows
unsigned char *ty[128]; // vector of pointers to y rows

/* Insert code here for creating the images */

for (i = 0; i < 64; i++)
    tx[i] = &x[i][0];
for (i = 0; i < 128; i++)
    ty[i] = &y[i][0];

/* Rotate the 64 by 128 input binary image to produce the
 * 128 by 64 output binary image
 */

RLbRotateImage(tx, ty, 90, 64, 128, 128, 64);
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MirrorImage
Mirror reflects an image
relative to a horizontal
or vertical line.

void RLbMirrorImage(const unsigned char **image, unsigned
char **outImage, int nInRows, int nInCols, int orient);

/* binary images */

void RLnMirrorImage(const unsigned char **image, unsigned
char **outImage, int nInRows, int nInCols, int orient);

/* 4-bit nibble images */

void RLyMirrorImage(const unsigned char **image, unsigned
char **outImage, int nInRows, int nInCols, int orient);

/* unsigned byte images */

void RLtMirrorImage(const signed char **image, signed
char **outImage, int nInRows, int nInCols, int orient);

/* signed byte images */

image The data structures for the input image.  An
image is implemented as a pointer to a vector of
pointers to vectors (one for each row of pixels).

outImage The data structures for the output image.  An
image is implemented as a pointer to a vector of
pointers to vectors (one for each row of pixels).

nInRows The number of rows in the input image.

nInCols The number of columns in the input image.

orient Indicates whether to reflect an image vertical or
horizontal.  The following values are allowed:

RL_ORIENT_HOR Reflect horizontal

RL_ORIENT_VER Reflect vertical
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Discussion

The function RL?MirrorImage() mirror reflects an image relative to a
horizontal or vertical line.
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CopyImage
Copies an image or a
part of an image to
another image.

void RLbCopyImage(const unsigned char **image, unsigned
char **outImage, rect *copyRgn, int orgRow, int orgCol);

/* binary images */

void RLnCopyImage(const unsigned char **image, unsigned
char **outImage, rect *copyRgn, int orgRow, int orgCol);

/* 4-bit nibble images */

void RLyCopyImage(const unsigned char **image, unsigned
char **outImage, rect *copyRgn, int orgRow, int orgCol);

/* unsigned byte images */

void RLtCopyImage(const signed char **image, signed char
**outImage, rect *copyRgn, int orgRow, int orgCol);

/* signed byte images */

image The data structures for the input image.  An
image is implemented as a pointer to a vector of
pointers to vectors (one for each row of pixels).

outImage The data structures for the output image.  An
image is implemented as a pointer to a vector of
pointers to vectors (one for each row of pixels).

copyRgn Specifies the rectangular region to be copied.

orgRow, orgCol Indicates the left upper vertex of the output
image.

Discussion

The function RL?CopyImage() copies an image or a part of an image to
another image.
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Mask Convolution

This is one of the most important image processing primitives and a
variety of image processing functions can be implemented with this
capability (for example, edge detection, blurring, noise removal, feature
detection, and so on).  A square or rectangular mask can be used.  For a
mask of size m by n (assuming m and n are odd) with pixels ckl, a new pixel
output value oij (output image size is x by y) is computed for pixels iqr in
the input image (size x by y) as

o =  i  c     ij
k = 0
l = 0

k = m
l = n

qr kl∑

where i = 0,1,..,x and j = 0,1,..y and q = i + k-floor(m/2) and
r = j + l - floor(n/2).
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MaskConvolve
Convolves a mask with
an image.

void RLMaskConvolve(const char **image, const char
**mask, char **outImage, int imageDataType, int
maskDatatype, int outDataType, int nImageRows, int
nImageCols, int nMaskRows, int nMaskCols, rect
*convolveRegion, int doScale, int *scaleFactor)

image, mask, The data structures for the input image, mask,
outImage and output images respectively.  An image (or

mask) is implemented as a pointer to a vector of
pointers to vectors (one for each row of pixels).
Although each vector is declared to be an array
of bytes (char), the actual interpretation of the
bytes is determined from the value of the
argument ?DataType described below.

imageDataType, The data types of the input image, mask, and
maskDataType, output images respectively.  The following
outDataType predefined constants are used to indicate the

types which are allowed for the input and output
images:

BIT Binary image (that is, single bit
pixels).  8 pixels per byte.

UNIBBLE Unsigned 4-bit pixels.  Two
pixels per byte.

UBYTE Unsigned 8-bit byte pixels.

SBYTE Signed 8-bit byte pixels.

The following types are allowed for the mask:

SBYTE Signed 8-bit byte pixels.

SWORD Signed 16-bit word pixels.
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nImageRows, The number of rows and columns in
nImageCols the images.

nMaskRows, The number of rows and columns in
nMaskCols the mask.

convovleRegion Specifies the rectangular region over which the
convolution is to be performed.  The type
declaration for rect is:

typedef struct _rect {
  int leftTopRow; int leftTopCol;
  int rightBotRow; rightBotCol;} rect;

doScaleOutput, Refer to “Integer Scaling” in Chapter 1.
scaleFactor However, in this case, the option

RL_AUTO_SCALE is not allowed.

Discussion

The function RLMaskConvolve() convolves the mask mask with the input
image image over the region defined by convolveRegion and creates the
output image outImage which contains the result of the convolution.  All
of the other arguments listed above describe the data structures and types
of the input image, output image, and mask.

Example 6-2 shows how mask convolution can  be used to implement a
simple image blurring  operation. Each pixel in the output is set to the
average of its immediate eight neighbours.
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Example 6-2 Blurring an Image Using Mask Convolution

/* Blur an image using a simple mask containing all ones except
 * the centre pixel.
 */

char x[32][32]; // Input 32 by 32 8-bit signed pixel image
char y[32][32]; // Output 32 by 32 8-bit signed pixel image
char mask[3][3]; // 3 by 3 mask, 8-bit signed pixels
rect region = {0, 0, 31, 31}; // convolve entire image
int i, j;
int *scaleFactor;

unsigned char *ti[32];  // vector of pointers to input image rows
unsigned char *to[32];  // vector of pointers to output image rows
unsigned char *tm[3];   // vector of pointers to mask rows

/* insert code here for creating the input image */

for (i = 0; i < 32; i++)
    ti[i] = &x[i][0];
for (i = 0; i < 32; i++)
    to[i] = &y[i][0];
for (i = 0; i < 3; i++)
    tm[i] = &mask[i][0];

/* Initialize the mask */
for (i = 0; i < 3; i++)
   for (j = 0; j < 3; j++)

mask[i][j] = 1;
mask[1][1] = 0; // set the centre pixel to 0

/* Perform the convolution. Use a scaleFactor of 3 so
 * that each output pixel is divided by 8. Effectively
 * each output pixel is computed as the sum of its eight
 * neighbours divided by 8.
 */

*scaleFactor = 3;
RLMaskConvolve(ti, tm, to, SBYTE, SBYTE, SBYTE, 32, 32,

3, 3, region, RL_FIXED_SCALE, scaleFactor);
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This chapter describes two Dynamic Programming techniques: Dynamic
Time Warping (DTW) and Hidden Markov Models (HMM).  These are
pattern  matching techniques, which are used when the natural data has a
dimension in which the data is distorted.  For example, this dimension
includes time for continuous speech and the left-to-right direction for
cursive handwriting.

Dynamic Time Warping

Dynamic Time Warping is a technique for elastically matching a sequence
of observations to a reference pattern (template). The observation and
reference features are laid out in sequence along the x  and y  axes
respectively of a grid. For each point in the grid, the distance (according to
some distance metric) between corresponding features in the observation
and reference pattern features is computed. This distance is then  added to
the minimum distance found in one of a specified set of precursor grid
points.

The optimum alignment between an observation sequence and a reference
pattern is represented by a path through the m indices of the reference
pattern to the n indices of the observation sequence, of the form

m = w(n), that minimizes the accumulated distance.

The diagram below shows one possible alignment path between the
observation sequence and reference patterns.
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Figure 7-1 An Alignment Path Between an Observation Sequence and

Reference Patterns
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The DTW can be fully specified by

• Endpoint constraints.
• Local constraints.
• The distance metric.

These are described below.

Endpoint Constraints

The simplest endpoint constraint is of the form

• w(1) = 1 and
• w(NO) = NR

(where NO and NR are the last points of the observation and reference
patterns) that is, perfect alignment of the endpoints. This is called
constrained endpoints, 2-to-1 slope range (RL_CE21).

A second variant called unconstrained endpoints 2-to-1 slope range
(RL_UE21) slightly relaxes the endpoint constraints to the set

1<= w(1) <= 1+δ

NR- δ <= w(NO) <= NR
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Local Constraints

Local constraints describe the possible types of motion like directions,
slopes, and so on. One constraint that is always assumed for speech is that
the time index can only increase monotonically. Under this condition the
minimum accumulated distance D(n, m) from the initial point n = 1, m = 1
to the grid point (n, m) can be computed recursively as

D(n, m) = d(On, Rm) +  min [D(n-1,  q)],    q <= m

where On and Rm are the nth observation and mth reference pattern features
respectively and q is a set of m values such that a path exists between (n-1,
q) and (n, m).

One type of local constraint is known as the Itakura local constraint. This
constraint dictates that three or more consecutive points in the path cannot
be flat (that is, horizontal). The Itakura local constraint can be expressed
as:

w(n) - w(n-1) = 0, 1, 2 if w(n-1) ≠ w(n-2)

= 1, 2 if w(n-1) = w(n-2) otherwise

Effectively, due to this constraint, three or more consecutive points in the
path cannot be flat (that is, horizontal). With this constraint, the
accumulated distance can be written in a simpler form recursively as

D(n,m) = d(O, R) + min [D(n-1, m)g(n-1, m), D(n-1, m-1), D(n-1, m-2)]

where

g(n-1, m) = 1 if w(n-1) ≠ w(n-2)

 = α (infinity) if w(n-1) = w(n-2) otherwise

The final desired solution (that is, D(NO, NR), the minimum accumulated
distance over the entire path) is computed iteratively using the above
equation.

Distance Metrics

The supported distance metrics are City-block and Euclidean.
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EvalDTW
Computes the minimum
distance between an
observation sequence
and a set of reference
(or template) sequences
(patterns) using the
Dynamic Time Warping
algorithm.

int RLwEvalDTW(int * idPattern , int nPattern , short int
** oSeq, int nSeq, int len , int oFactor , int flags , int
thrsh , int thrshFactor , int delta , int * dist , int
doScale , int scaleFactor );

/* 16-bit integer vectors */

int RLsEvalDTW(int idPattern , int nPattern , float ** oSeq,
int  nSeq , int len , int flags , double thrsh , int delta ,
double * dist );

/* single precision; real vectors */

idPattern The vector of pattern IDs of the reference
patterns (templates) that the observation
sequence will be matched to. Each pattern is
created by a call to the function
RL?PatternIni() .

nPattern The number of reference patterns to evaluate.
This is the length of the idPattern  vector.

oSeq A pointer to a vector of pointers (corresponding
to the observation sequence) to vectors. Each
vector corresponds to one point or feature in the
sequence.   

nSeq The length of the observation sequence.

len The length of each observation or reference
feature vector.
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oFactor The int  scale factor. This is the power of two by

which the oSeq should be multiplied to recover
the actual values of sequence elements.

flags An ORed bit mask of options for the DTW. These
options are predefined and can be logically ORed
to turn on the appropriate options. The following
is a list of available:

Endpoint Constraint Options

RL_CE21 Constrained endpoints 
2-to-1 slope range.

RL_UE21 Unconstrained endpoints 
2-to-1 slope range.

Local Constraint Options

RL_ITAKURA Itakura local constraint. This is
the only local constraint 
currently supported.

Distance Metric Options

RL_L1NORM City-block distance metric.

RL_L2NORM Euclidean distance metric.

Threshold Option

RL_TRHESHOLD Option for abandoning the
match when accumulated distance is more than
the thrsh  value.

thrsh The distance threshold value for abandoning
matches. This value should be used only when
the RL_THRESHOLD option is specified.

thrshFactor The power of two by which the thrsh  should be
multiplied to recover the actual thrsh  value.

delta The delta value to be used only when the
endpoint constraint is specified as RL_UE21.
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dist Pointer to where the accumulated distances

between the observation sequence and the
nPattern  corresponding patterns should be
saved. It is assumed that enough memory has
been allocated by the user.

doScale Indicates how the dist  vector should be scaled.
Refer to “Integer Scaling” in Chapter 1.

scaletFactor The pointer to an int  scale factor for the dist

vector.

Discussion

The function RL?EvalDTW() evaluates the minimum distance
(corresponding to the best elastic match) between the observation and
reference patterns oSeq and idPattern  respectively using the dynamic
programming DTW algorithm. The index of the reference pattern in the
idPattern  vector with the minimum distance to the observation sequence
is returned. The distances to all of the reference patterns are returned in the
vector dist . The reference patterns can be created by calling the function
RL?PatternIni() .
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PatternIni
Creates and initializes a
reference pattern for use
in the DTW algorithm.   

int RLwPatternIni(short int ** pSeq, int  nSeq , int len ,
int pFactor );
/* 16-bit integer vectors */

int RLsPatternIni(float ** pSeq, int nSeq, int len );
/* single precision; real vectors */

pSeq A vector of pointers (corresponding to the
pattern sequence) to vectors. Each vector
corresponds to one point (or feature) in the
sequence.   

nSeq The length of the pattern sequence.

len The length of each feature vector.

pFactor The int  scale factor which is the power of two
by which the pSeq should be multiplied to
recover the actual values of sequence elements.

Discussion

The function RL?PatternIni() creates and initializes a reference pattern
(that is, template) for use when calling the RL?EvalDTW()  function. The
ID of the newly created pattern is returned.
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PatternFree
Destroys and frees the
memory of reference
patterns.

void RLwPatternFree(int idPattern );
/* 16-bit integer vectors */

void RLsPatternFree(int idPattern );
/* single precision; real vectors */

void RLwPatternFreeAll();
/* 16-bit integer vectors */

void RLsPatternFreeAll();
/* single precision; real vectors */

idPattern The ID of the corresponding pattern to be
destroyed.   

Discussion

The function RL?PatternFree() destroys and frees the memory
associated with a reference pattern. The function RL?PatternFreeAll()

destroys all existing reference patterns.

Example 7-1 shows the code to evaluate the minimum distance between
the observation sequence and reference patterns.



Dynamic Programming

7-9

7
Example 7-1 Using DTW Evaluation

/* Evaluate the minimum distance between the observation sequence
 and reference patterns  */

int     nPttrn = 3;          /* number of patterns to evaluate */
int    *idPttrn;             /* id's patterns vector */

int     bestPttrn;           /* the best pattern index */
double *dist;                /* vector for accumulated distances
saving */

int flags = RL_CE21|RL_ITAKURA|RL_L1NORM; /* flags for DTW
evaluation */

float a[32][8], b[30][8], c[34][8], d[30][8]; /* patterns sequences
and observation sequence*/

float *t_a[32], *t_b[30], *t_c[34], *t_d[30]; /* vectors of pointers
to sequences "points" */
int i;

/* Insert code here to initialize the sequences */

....

/* Allocate memory for pattern manipulation */
idPttrn = (int*)malloc(nPttrn*sizeof(int));
dist    = (double*)malloc(nPttrn*sizeof(double));

/* Iinitialize the vectors of pointers to sequences "points" */
for(i=0;i<32;i++) t_a[i] = &a[i][0];
for(i=0;i<30;i++) t_b[i] = &b[i][0];
for(i=0;i<34;i++) t_c[i] = &c[i][0];
for(i=0;i<30;i++) t_d[i] = &d[i][0];

/* Patterns initialization */
idPttrn[0] = RLsPatternIni(t_a, 32, 8);
idPttrn[1] = RLsPatternIni(t_b, 30, 8);
idPttrn[2] = RLsPatternIni(t_c, 34, 8);

/* DTW evaluation */
bestPttrn = RLsEvalDTW(idPttrn, nPttrn, t_d, 30, 8, flags,

 (float)0.0, 0, dist);

/* Delete the patterns to reclaim memory */
RLsPatternFreeAll();
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Hidden Markov Models

HMMs are used to model data that have statistical properties that vary with
time.  Speech  is the most common data type modeled by HMMs.  In
speech recognition, features such as Cepstral coefficients are extracted
from frames of speech to reduce the dimension of the speech signal. A
sequence of  feature vectors, also referred to as observations Ot(t=1,2…T),
are  and then classified into linguistic components such as words,
subwords, or phonemes.  A sequence of such components  is referred to as
an utterance.  An HMM can be characterized by its probability of
producing such  a given sequence of observations. The functions in this
section provide for the rapid evaluation of these HMM probabilities given
a set of previously derived HMMs and a sequence of observations.   

A Markov model consists of N states numbered j  = 1,2,... N. Transitions
can occur from one state to another.

Three types of HMMs can be defined based on the type of transitions that
are allowed between states:

• Ergodic or “fully connected” HMMs. Any state of the HMM can be
reached (in a single step) from any other state.

• Left-right or “Bakis” model. As time increases the state index increases
(or stays the same); that is, the state transitions proceed only from left
to right.

• Constrained jump model. Transitions can occur from state j  to state j ,
j +1 or j +2. See Figure 7-1.

This library supports all three of the models in the preceding list.

Figure 7-1. Constrained Jump HMM with Four States

j=1 j=2 j=3 j=4
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An HMM is fully specified by the parameter set {A, B, π} where:

• A is the matrix {a ij} where a ij is the probability of transition from state
i  to state j .

• B is the vector {b j (Ot)} where b j (Ot)  is the observation likelihood of
observation Ot when in state j .

• π is the vector {πj} where πj is the probability of starting in state j .

A complete description of the notation used here and how it relates to the
parameters used in the library functions is shown in Table 7-1.

HMMs can be further classified into three types based on how the
observation likelihoods b j (Ot)  are modeled. These types are:

• Discrete HMMs: In discrete HMMs, the observation vector Ot  is
quantized.  See the VQKohonen function in this library.  The index, k,
of a reference vector that most closely matches the observation vector
is determined.  The index is then used to look up a corresponding
value b jk, which  represents the observation likelihood b j (Ot).[3]  See
Figure 7.2.

• Semi-Continuous HMMs: Here the b j (Ot) values are obtained as the
output of a continuous conditional Gaussian mixture probability
density function given an observation vector, (Ot),  as input. The
Gaussian components  are not associated with the state or HMM and
can be computed once for the given continuous acoustic observation
vector. The Gaussian components pkd are common to all the HMMs in
the system.  While the mixture weights, Wkj are specific to each state of
each HMM[4]. See Figure 7-3.

• Continuous HMMs: Each b j (Ot) here requires the computation of a
continuous Gaussian mixture probability density function This type of
HMM is therefore the most computation intensive because there is one
Gaussian mixture per state per HMM.  See Figure 7-4.

All three types of HMMs are supported by this library.

The key computational tasks that make up a recognition system are the
following::

• Feature Extraction
• Training
• Recognition
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These computational components are described in the following section.

Feature Extraction

Feature extraction provides a vector of smaller dimension than the original
data, which contains only the essential information for the task at hand.
The Cepstral MFCC function in the library extracts the most commonly
used speech features from a vector of speech audio samples.  Feature
extraction is performed periodically on a time window of audio samples.
A vector of speech acoustic features is referred to as an observation vector,
and is typically extracted once every 10 milliseconds from a 20
millisecond window of the speech audio signal, which is sampled at 8 to
16 kHz.   Feature extraction from the speech signal corresponding to an
utterance produces a sequence of continuous observation vectors Ot (t  =
1,2...,T). For the discrete HMM (described earlier), these continuous
observation vectors are vector quantized using a codebook containing a set
of reference vectors R

k
, (k  = 1,2...,k ). The codebook index, k , is used to

look up likelihoods, b jk, for each state of the HMM.

Training

The training task consists of estimating the probabilities { A, B, π}

(described in the preceding section) given a training set of known
utterances. The training of HMMs is a complex issue with many tradeoffs,
and as a result cannot be easily supported by a general purpose library.
The user must do the training prior to using the library.

Recognition

The recognition task uses the observation likelihoods b j (Ot) and the
transition probabilities a ij to calculate the probability that each HMM
produced the utterance. The Forward algorithm [1] estimates the
probability for all possible paths through an HMM while the Viterbi
algorithm, which is faster, estimates only the probability of the best path
through an HMM. The word recognized is the word associated with the
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HMM that produced the highest probability. Both algorithms use dynamic
programming but perform different calculations at each point within the
lattice.

The Forward algorithm uses both “multiply” and “add” operations while
the Viterbi algorithm uses only the “add” operation. The Viterbi algorithm
is the preferred method to estimate HMM probabilities because it avoids
costly multiply operations. In this library, the Viterbi algorithm is
supported through the function RL?EvalHMMViterbi()

HMM Implementation and Class Concept

The HMM implementation follows a server model, where a server is
initialized for each HMM using an initialization function,
RL?InitHMMServer() . When many HMM-servers are involved, which is
typical for recognition tasks, all HMM-servers can be  separated into
classes. However, these need not be disjoint classes; that is,  more than one
class can contain the same HMM-server. This feature is useful when
linguistic processing is used to determine the next set of HMMs to
evaluate; the next set is represented by a class, which contains HMM-
servers of  the same type (discrete, semi-continuous, or continuous). The
functions RLCreateHMMClass() , RLFreeHMMClass() ,
RLAddHMMToClass() , RLRemoveHMMFromClass() , and
RLHMMFreeAll()  support the creation, deletion, and management of
classes.

You can pass a  single HMM or an entire class of HMMs to
RL?EvalHMMViterbi()  for evaluation.

Three different schemes for  recognition using the Recognition Primitives
Library functions are presented in Figures 7-2, 7-3, and 7-4. Table 7-1
describes the notational conventions used in the figures.  Figures  7-5 and
7-6  illustrate the data structures used in the semi-continuous and
continuous HMMs.

For the discrete HMM case, each codeword of the codebook is an
observation vector (a center of corresponding acoustic space region).
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For the semi-continuous HMM case, each codeword is used as the mean
vector of  a simple Gaussian probability density function. Gaussian
mixture servers for these pdfs must be initialized before the initialization
of any semi-continuous HMM server and must not be freed while the
HMM servers are in use.

For the continuous HMM case, a codebook is not used. A Gaussian
mixture probability density function is defined for each state of every
HMM. Gaussian mixture servers for all states of a continuous HMM server
must be initialized before the initialization of the HMM server and must
not be freed while it is in use.

Table 7-1. Notation Conventions for Figures 7-2, 7-3, and 7-4

Description Notation Library
Parameter

Data Structure

Number of HMM States N nStates scalar
Number of Observation
symbols K nSymbols scalar
Number of Dimensions in
Observation and Reference
Vectors

D nQuant scalar

Initial Probabilities π j iprob { π j , . . .j N= 1 }

pointer to vector
Transition Probability from
state i to state j

ai j tprob
{ ai j , 

i N

j N

=
=

1

1

. . . ,

. . .
}

pointer to two dimensional array
Observation Sequence Ot nqvect {Ot , . . . }t T= 1

Length of Observation
Sequence

T nObserv scalar

Reference Vectors used in VQ Rk lookUp { R k Kk , . . .= 1 }



Dynamic Programming

7-15

7
Probability for symbol k  in
state j

(discrete HMM)

bj k symbprob
{ bj k ,  

j N

k K

=
=

1

1

. . . ,

. . .
}

pointer to two dimensional lookup
table

Vector of Codebook Indices
(discrete HMM)

V vect { vt , t T= 1. . . }

CCGPDFs for symbol k
(semi continuous HMM)

p Ok t( ) ccgPdfs {pk
, k K= 1. . . }

pointer to a set of Gaussian Mixture
Servers

Mean Vector for the i-th
Gaussian

µi meanVect  see meanVect in data structure
diagrams

Inverse Covariance Matrix for
the i-th Gaussian

Ei cov See cov in data structure diagrams

Number of Gaussians in the
mixture

U nGauss scalar
(could vary for each state j)

Observation likelihood for
Ot  in state j

bj (Ot ) (internal) scalar

Gaussian Mixture Weight
for symbol k in state j
(semi continuous HMM)

Wj k weightVect
{ Wj k , 

j N

k K

=
=

1

1

. . .

. . .
}

see weightVect in data structure
diagrams

Gaussian Mixture Weight
for u-th Gaussian in state j
(continuous HMM)

Wj u weightVect
{ Wj u ,

j N

u U j

=
=

1

1

. . .

. . .
}

see weightVect in data structure
diagrams

Viterbi Probability P
v pvit scalar
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Figure 7-2. Recognition Scheme Using Discrete Servers
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HMMId = RLsInitHMMServer

(tprob, symbprob, iprob,
nStates, nSymbols, flags)

HMM Class Initialization

classId=RLCreateHMMClass ()
RLAddHMMToClass

(classId, HMMId)
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Figure 7-3. Recognition Scheme Using Semi-Continuous HMM Servers
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Viterbi probability is a minimum for all HMMs from the class of the value

log (P  ) = min  {log φ  ( j) }, where
log(φ  ( j) ) =- log π  - log b  (O ).
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p (O ) = det (E )    / (2π)     *exp{-(O - µ  ) E (O  - µ ) / 2}

b (O ) = Σ W  P (O )

and the best HMM number is  argmin  {log φ  (j) }
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ccgPdfs[k] = RLsInitGaussMixServer
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Figure 7-4. Recognition Scheme Using Continuous HMM Servers
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Viterbi probability is a minimum for all HMMs from the class of the value

log (P  ) = min  {log φ  ( j) }, where
log(φ  ( j )) =- log π  - log b  (O ).

log φ    ( j)  = min  {log φ  ( i)  - log a  } - log b  (O    ),
b (O ) = ΣW   *exp{-(O - µ  )  *E  *(O - µ  ) / 2}

and the best HMM number is  argmin  {log φ  (j) }
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Figure 7-5. Data Structures Used in Semi-Continuous HMMs
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Figure 7-6. Data Structures Used in Continuous HMMs
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InitHMMServer
Creates and initializes
an HMM server.

int RLwInitHMMServer(short ** tprob , short ** symbProb ,
short * iprob , int nStates , int nSymbols ,  int flags);

/* discrete HMM for 16-bit integer vectors */

int RLsInitHMMServer(float ** tprob , float ** symbProb ,
float * iprob , int nStates , int nSymbols ,  int flags);

/* discrete HMM for single precision; real vectors */

int RLwInitSemicontHMMServer(short ** tprob , short
** WeightVect , short * iprob , wGaussMixServer_t ** ccgPdfs ,
int nStates , int nSymbols, int  nQuant,  int flags , int
scaleFactor );

/* semi-continuous HMM for 16-bit integer vectors */

int RLsInitSemicontHMMServer(float ** tprob , float
** wieghtVect , float * iprob , sGaussMixServer_t ** ccgPdfs  ,
int nStates , int nSymbols, int  nQuant , int flags );

/* semi-continuous HMM for single precision; real
vectors */

int RLwInitContHMMServer(short ** tprob , short * iprob ,
wGaussMixServer_t ** outPdfs , int nStates, int  nQuant,  int
flags , int scaleFactor );

/* continuous HMM for 16-bit integer vectors */

int RLsInitContHMMServer(float ** tprob , float * iprob ,
sGaussMixServer_t ** outPdfs , int nStates , int nQuant , int
flags );

/* continuous HMM for single precision; real vectors*/

tprob Pointer to a vector of pointers to the rows of the
transition probability matrix. Rows and columns
both correspond to states. Each value within the
matrix represents the probability of transition
from the state associated with its row to the state



Dynamic Programming

7-23

7
associated with its column. The structure of the
HMM (constrained jump, Bakis or ergodic) is
defined by the values of the transition
probabilities.

symbProb symbProb  is a pointer to a vector of pointers to
the rows of the observation symbol probability
matrix used in discrete HMMs. Row vectors
correspond to states. The number of columns is
equal to the number of symbols. Each value in
the matrix corresponds to the probability of
emitting the associated symbol while in the state
associated with its row.

weightVect weightVect  is a pointer to a vector of pointers
to the rows of a weight matrix. The number of
columns is equal to the number of nSymbols.
The values are not logarithmic even if the
RL_HMM_LOGARITHMIC flag is set. For the short
integer form,  RLwInitSemiContHMMServer ,
the  weightVect  matrix elements are assumed
to be in fixed-point notation where the short
ineteger value passed is to be multiplied by  2 -14

before being used. The observation likelihood
for  state j  is the dot product of the j th row of
weightVect and the vector of continuous
conditional Gaussian pdfs.  This data structure is
used only by semi-continuous HMMs.

iprob Pointer to the initial probability vector of length
nStates .

ccgPdfs Pointer to a  Gaussian mixture server pointer
vector of length nSymbols . This vector of
pointers specifies the Gaussian Mixture servers
that provide the continuous conditional Gaussian
pdfs to the semi-continuous HMM evaluation
function.
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scaleFactor scaleFactor  is not currently used.

outPdfs Pointer to a Gaussian mixture server pointer
vector of length nStates . This vector of pointers
specifies the Gaussian mixture servers that
provide observation likelihoods to the
continuous HMM evaluation function.

nStates Number of states in the HMM.

nSymbols Number of discrete symbols used in the discrete
HMM. Symbols refers to the number of unique
codebook entries to which the observations are
quantized. For semi-continuous HMMs,
nSymbols  represents the number of ccgpdfs
used.

nQuant Dimension of quantization space. The dimension
of the observation vectors, the reference vectors
used in VQ, and the mean vectors of the
Gaussians used in the semi-continuous and
continuous models..

flags RL_HMM_LOGARITHMIC

Currently the only flag supported for
InitHMMServer , which indicates that symProb ,
weightVect , and iprob are logarithmic. The
values for these parameters  should be negative
log probabilities. The logarithm (base 10) of the
probability (in the range 0 to 1) should be  taken
and the sign changed to  positive. For short
integers, the numbers might need to be scaled to
fit them in the 16-bit range and to prevent
overflow. The same scaling factor should be used
for tprob , symbProb , and iprob  values.
Currently, logarithmic data is the only type
supported so this flag must be used.
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Discussion

The functions RL?InitHMMServer() ,
RL?InitSemicontHMMServer() and RL?InitContHMMServer() , create
and initialize an HMM by passing all of the required arguments to it. The
function then returns an ID for the newly created HMM or -1 if an error
occured. This ID can then be used when calling the functions
RL?EvalHMMViterbi(), RL?EvalSemiContHMMViterbi(), and
RL?EvalContHMMViterbi() to evaluate  an HMM or a group of HMMs.
See Figures 7-2, 7-3, and 7-4.
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FreeHMMServer
Deletes and frees the
storage associated with
an HMM server.

void RLFreeHMMServer(int HMMId);

HMMId The ID of the HMM server to delete.

Discussion

The function RLFreeHMMServer()  destroys and frees the storage space
for the HMM server corresponding to HMMId. The HMM server also is
removed from all the HMM classes. The value returned is 1 if the function
ended successfully and -1 otherwise. An error status is set if the HMM
server does not exist.  (See “Error Functions” in Chapter 2.)
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EvalHMMViterbi
Evaluates a set of
HMMs for a given
observation sequence
using the Viterbi
Algorithm.

int RLwEvalHMMViterbi(int HMMOrClassId , int * vect , int
nObserv,  int  *bestHMMId, int doScale,  int  *scaleFactor );

/* discrete HMM for short integer vectors  */

float  RLsEvalHMMViterbi(int HMMOrClassId , int * vect , int
nObserv, int  *bestHMMId );

/* discrete HMM for single precision real vectors  */

int RLwEvalSemicontHMMViterbi(int HMMOrClassId , short
*nqV ect , int nObserv,  int  *bestHMMId, int doScale,  int
*scaleFactor );

/* semi-continuous HMM for short integer vectors  */

float  RLsEvalSemicontHMMViterbi(int HMMOrClassId , float
*nqV ect , int nObserv, int  *bestHMMId );

/* semi-continuous HMM for single precision real
vectors  */

int RLwEvalContHMMViterbi(int HMMOrClassId , short
*nqV ect , int nObserv,  int  *bestHMMId, int doScale,  int
*scaleFactor );

/* continuous HMM for short integer vectors  */

float  RLsEvalContHMMViterbi(int HMMOrClassId , float
*nqV ect , int nObserv, int  *bestHMMId );

/* continuous HMM for single precision real vectors */

HMMOrClassId The ID of the HMM server or HMM class that is
to be used, which is created originally by a call
to RL?Init?HMMServer()  or
RLCreateHMMClass() . If HMMOrClassId  is
less then zero, ID is considered to be a class ID, if
greater then zero, it is considered to be the ID of
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an HMM server. All HMM servers from class
must be initialized with same values of
nSymbols  and nQuant  parameters.

vect A vector of codebook indices corresponding  to
the sequence of codebook vectors, which most
closely match the sequence of observations. The
dimension of  vect  is  nObserv .

nqVect The observation sequence non-quantized vector
of length nObserv . Each element of  nqVect is
a pointer to an observation vector of length
nQuant . .

nObserv The number of symbols in the observation
sequence.

bestHMMId The ID of the HMM with the best (minimum)
computed score. The minimum negative log
probability score corresponds to the  maximum
probability score. This argument is useful only
when the ID of a class is passed to the function in
the argument HMMORClassID. The value of
bestHMMId  is returned by the function.

doScaleOutput , Refer to “Integer Scaling” in Chapter 1.
scaleFactor

Discussion

The function RL?EvalHMMViterbi() evaluates a single HMM or a group
of HMMs (that is,  Class) for the given observation vector vect  using the
Viterbi algorithm. If HMMOrClassId is positive, it is considered to be an
HMM server ID, and only one model is evaluated. If HMMOrClassId is
negative, it is considered to be an HMM class ID, and a set of models are
evaluated. The value returned is the best score (or probability in the log
domain).
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The Viterbi algorithm used for recognition computes the probability (that
is, the likelihood) that the most likely state sequence in the HMM produces
the observation sequence Ot (t  = 1,2...,T).

PV = maxj=1,N{  φφt } = Viterbi Probability

where φt is computed using the recursive pair

φφt+1 = maxj=1,N{  φφt * a ij} * b j(Ot+1), t  = 1,2...,T-1

and φφ1(j ) = ππj * b j(O1)

In this implementation, negative log probabilities are used, so the above
equations reduce to :

log (PV) = -min j=1,N{ log (φφt)}

where φt is computed using the recursive pair

log (φφt+1) = min j=1,N{ log (φφt) - log (a ij)} - log (b j(Ot+1)), t = 1,2...,T-1

and

log (φφ1(j )) = -log (ππj) -  log (b j(O1))

Note that in this equation, for a discrete HMM, b j(Ot) = b jk is the
probability of producing observation Ot when in state j  and  the
observation Ot is vector quantized to reference pattern Rk. For a semi-
continuous or continuous HMM the bj(Ot)  for all states j  at time t  are
computed by Gaussian mixture probability evaluation. See figures 7.3 and
7.4 respectively. The quantity a ij is the transition probability going from
state i  to state j  and πj is the initial probability of state j .
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 CreateHMMClass
Creates an HMM class
(a collection of HMM
servers).

int RLCreateHMMClass();

Discussion

The function RLCreateHMMClass()  creates and returns the ID of a new
HMM class. If an error occurs -1 is returned. An HMM class is a collection
of HMM servers that can be passed as a group to the
RL?EvalHMMViterbi()  function. HMM servers can be added to a class
using the function RLAddHMMToClass()  and removed from a class using
the function RLRemoveHMMFromClass() . An HMM class contains HMM
servers of one type (discrete, semi-continuous or continuous). Class type is
defined with the addition of the first HMM server.
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FreeHMMClass
Deletes and frees the
storage associated with
an HMM class.

int RLFreeHMMClass(int classId);

classId The ID of the HMM class to delete.

Discussion

The function RLFreeHMMClass()  deletes and frees the storage associated
with an HMM class. The value returned is 1 if the function ended
successfully and -1 otherwise. An error status is set if the class does not
exist. (See “Error Functions” in Chapter 2.)
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AddHMMToClass
Adds an HMM server to
a class.

int RLAddHMMToClass(int classId, int HMMId);

classId The ID of the HMM class.

HMMId The ID of the HMM server to add to the HMM
class.

Discussion

The function RLAddHMMToClass()  adds an HMM server to a class. The
value returned is 1 if the function ends successfully (the HMM server is
added to the class or already belongs to it) and -1 otherwise. An error
status is set if the class or the HMM server does not exist or if the server is
added to class of another type. (See “Error Functions” in Chapter 2.)
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RemoveHMMFromClass
Removes an HMM
server from  a class.

int RLRemoveHMMFromClass(int classId, int HMMId);

classId The ID of the HMM class.

HMMId The ID of the HMM server to remove.

Discussion

The function RLRemoveHMMFromClass()  removes an HMM server from a
class. The value returned is 1 if the function ends successfully (the HMM
server is removed from the class or does not belong to it) and -1 otherwise.
An error status is set if the class or the HMM server does not exist. (See
“Error Functions” in Chapter 2.)
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HMMFreeAll
Clean-up function to
free storage space and
delete all HMM servers
and classes.

void RLHMMFreeAll();

Discussion

RLHMMFreeAll()  deletes all of the current HMM servers and classes. The
function also frees the storage associated with them.
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This chapter includes functions for data conversion, complex vector
support and processor type detection.

Data Conversion

The data conversion functions convert scalar or vector data of one type to
another data type. When data is converted from a higher-precision
representation to lower-precision representation it is referred to as “scaling
down.” When converting from a lower-precision representation to a
higher-precision representation it is referred to as “scaling up.” Functions
are also provided to convert complex data types to real data types.

Scaling Down

The following functions convert scalars or vectors from a higher-precision
representation to a lower-precision representation. The scaling options
(described in Chapter 1) determine how the data is scaled.
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ConvertDown
Scales down a scalar
from one data type to
another.

short int RLswConvertDown(float value, int doScale, int
*scaleFactor);

/* float-to-short */

short int RLdwConvertDown(double value, int doScale, int
*scaleFactor);

/* double-to-short */

long RLsiConvertDown(float value, int doScale, int
*scaleFactor);

/* float-to-long  */

long RLdiConvertDown(double value, int doScale, int
*scaleFactor);

/* double-to-long */

value The data value to be converted.

doScale, Refer to “Integer Scaling” in Chapter 1.
scaleFactor

Discussion

The function RLxyConvertDown()scales down a value of type x to a
value of type y using the scaling options provided. The converted value is
returned.
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Example 8-1 show the code to transform different input values with
various scaling options.

Example 8-1 Using the Function RLswConvertDown()

/* This example shows the use of the function RLswConvertDown() in
 * transforming different input values with various scaling
 * options.*/

#include  <stdio.h>
#include “rl_cnvrt.h”

main() {
  float      value1 = (float)-3.5;
  float      value2 = (float)6.7;
  float      value3 = (float)32770.0;
  float      value4 = (float)0.2;
  float      value5 = (float)-32777.3;
  short int  outValue1, outValue2, outValue3, outValue4, outValue5,
outValue6;
  int        scaleFactor;

scaleFactor = 0;

  outValue1 = RLswConvertDown(value1, RL_NO_SCALE, &scaleFactor);

  scaleFactor = 2;
  outValue2 = RLswConvertDown(value2, RL_FIXED_SCALE, &scaleFactor);

  scaleFactor = -2;
  outValue3 = RLswConvertDown(value2, RL_FIXED_SCALE, &scaleFactor);

  outValue4 = RLswConvertDown(value3, RL_AUTO_SCALE, &scaleFactor);

  outValue5 = RLswConvertDown(value4, RL_AUTO_SCALE, &scaleFactor);

  outValue6 = RLswConvertDown(value5, RL_SATURATE, &scaleFactor);

  /*  insert code here to print  */
}

Output

Scaling: RL_NO_SCALE  scaleFactor = 0
    inValue1(float) = -3.5  outValue1(short int) = -3
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Scaling: RL_FIXED_SCALE  scaleFactor = 2
    inValue2(float) = 6.7  outValue2(short int) = 1

Scaling: RL_FIXED_SCALE  scaleFactor = -2
   inValue2(float) = 6.7  outValue3(short int) = 26

Scaling: RL_AUTO_SCALE  scaleFactor = 1
    inValue3(float) = 32770.0  outValue4(short int) = 16385

Scaling: RL_AUTO_SCALE  scaleFactor = -17
    inValue4(float) = 0.2  outValue5(short int) = 26214

Scaling: RL_SATURATE  scaleFactor = 0
    inValue5(float) = -32777.3  outValue6(short int) = -32768
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bConvertDown
Scales down a vector
from one data type to
another.

void RLswbConvertDown(float *inVect, short int *outVect,
int n, int doScale, int *scaleFactor);

/* float-to-short */

void RLdwbConvertDown(double *inVect, short int *outVect,
int n, int doScale, int *scaleFactor);

/* double-to-short */

void RLsibConvertDown(float *inVect, long *outVect, int
n, int doScale, int *scaleFactor);

/* float-to-long */

void RLdibConvertDown(double *inVect, long *outVect, int
n, int doScale, int *scaleFactor);

/*double-to-long */

inVect Pointer to the input vector to be converted.

outVect Pointer to the scaled down output vector.

n Length of the input (and output) vector.

doScale, Refer to “Integer Scaling” in Chapter 1.
scaleFactor

Discussion

The function RLxybConvertDown()scales down a vector of type x to a
vector of type y using the scaling options doScale and scaleFactor.
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Example 8-2 show the code to transform different input vectors with
various scaling options.

Example 8-2 Using the Function RLdwbConvertDown()

/* This example shows the use of the function RLdwbConvertDown() in
 * transforming different input vectors with various scaling
 * options. */

#include  <stdio.h>
#include “rl_cnvrt.h”

main() {
    double     inVect[5] = {-3.5, 32768.0, 0.2, 65000.0, 9.0};
    short int  outVect1[5], outVect2[5];
    int        n = 5, scaleFactor, i;

    RLdwbConvertDown(inVect, outVect1, n, RL_AUTO_SCALE,
&scaleFactor);

    RLdwbConvertDown(inVect, outVect2, n, RL_SATURATE, &scaleFactor);

    /*  insert code here to print  */
}

Output

inVect: -3.5  32768.0  0.2  65000.0  9.0

Scaling:  RL_AUTO_SCALE  scaleFactor = 1
   outVect1:  -1  16384  0  32500  4

Scaling:  RL_SATURATE  scaleFactor = 0
   outVect2:  -3  32767  0  32768  9
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Scaling Up

The following functions convert scalars or vectors from a lower-precision
representation to a higher-precision representation.

ConvertUp
Scales up  a scalar from
one data type to
another.

float RLwsConvertUp(short value, int scaleFactor);
/* short-to-float */

double RLwdConvertUp(short value, int scaleFactor);
/* short-to-double */

float RLisConvertUp(long value, int scaleFactor);
/* long-to-float */

double RLidConvertUp(long value, int scaleFactor);
/* long-to-double */

value The data value to be converted.

scaleFactor A scale factor used in scaling up the data. The
data is multiplied by 2(-scaleFactor) during conversion.

Discussion

The function RLxyConvertUp()scales up a value of type x to a value of
type y using the scaleFactor argument. The converted value is returned.



Intel Recognition Primitives Library Reference Manual

8-8

8
Example 8-3 show the code to transform an input value with various
scaling options.

Example 8-3 Using the Function RLwsConvertUp()

/* This example shows the use of the function RLwsConvertUp() in
 * transforming an input value with various scaling options. */

#include  <stdio.h>
#include “rl_cnvrt.h”

main() {
    short int    inValue = -3;
    float        outValue1, outValue2;
    int          scaleFactor = -2;

    outValue1 = RLwsConvertUp(inValue, scaleFactor);

    outValue2 = RLwsConvertUp(inValue, 1);

    /*  insert code here to print  */
}

Output

  scaleFactor = -2
      inValue(short int) = -3   outValue1(float) = -12.0

  scaleFactor = 1
      inValue(short int) = -3   outValue2(float) = -1.5



Miscellaneous Functions

8-9

8
bConvertUp
Scales up a vector from
one data type to
another.

void RLwsbConvertUp(short *inVect, float *outVect, int n,
int scaleFactor);

/* short-to-float */

void RLwdbConvertUp(short *inVect, double *outVect, int
n, int scaleFactor);

/* short-to-double */

void RLisbConvertUp(long *inVect, float *outVect, int n,
int scaleFactor);

/* long-to-float */

void RLidbConvertUp(long *inVect, double *outVect, int n,
int scaleFactor);

/* long-to-double */

inVect Pointer to the input vector to be converted.

outVect Pointer to the scaled-up output vector.

n Length of the input (and output) vector.

scaleFactor A scale factor used in scaling up the data. The
data is multiplied by 2(-scaleFactor) during conversion.

Discussion

The function RLxybConvertUp() scales up a vector of type x to a vector
of type y using the scaleFactor argument.
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Example 8-4 show the code to transform an input value with various
scaling options.

Example 8-4 Using the Function RLwsbConvertUp()

/* This example shows the use of the function RLwsbConvertUp()
 * in transforming an input vector with various scaling options.*/

#include  <stdio.h>
#include “rl_cnvrt.h”

main() {
    short int inVect[5] = {0, 2, -9, 13, -20};
    float     outVect1[5], outVect2[5];
    int       n = 5, scaleFactor = -1, i;

    RLwsbConvertUp(inVect, outVect1, n, scaleFactor);

    RLwsbConvertUp(inVect, outVect2, n, 4);

    /*  insert code here to print  */
}

Output

inVect:  0  2  -9  13  -20

scaleFactor = -1
    outVect1:  0.000000  4.000000  -18.000000  26.000000  -40.000000

scaleFactor = 4
    outVect2:  0.000000  0.125000  -0.562500  0.812500  -1.250000
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Complex Vector Support

The following functions convert complex vectors to real vectors.

bConvert
Converts a complex
vector to a real vector.   

void RLcsbConvert(SCplx * inVect , float * outVect , int n,
int flags );

/* float complex-to-float */

void RLvwbConvert(WCplx * inVect , short * outVect , int n,
int flags , int doScale , int * scaleFactor );

/* short complex-to-short */

inVect Pointer to the input complex vector to be
converted.

outVect Pointer to the output vector. Since the output is
no longer complex, its length is half the input,
that is, n/2. The data in the vector is contiguous.

n Length of the input vector.

flags Option that determines how the output is
computed. These flags can be ORed when used
(for example, RL_MAG |  RL_LOG10). However
RL_MAG and RL_SQMAG cannot be used together.
If you specify RL_LOG10 with RL_MAG or
RL_SQMAG, the logarithm is  taken as the final
operation (resulting in log magnitude or log
squared magnitude). The supported options are:

RL_MAG Magnitude output

RL_SQMAG Squared magnitude (this is also
known as the power spectrum).
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RL_LOG10 Logarithm (this is log base 10)

doScale, scaleFactor Refer to “Integer Scaling” in Chapter 1. 

Discussion

The function RLxybConvert()converts a complex vector of type x to a
real vector of type y using the flags argument. The output, being real, is
half the size of the complex input.

Processor Information

This section describes a function that can be used to query for the
processor family (for example, 486, Pentium, and so on). The function
uses a structure ProcessorInfo to return the information. This structure
is defined as follows:

typedef struct {
     int family;

int model;
int stepping;
char name[100];

} ProcessorInfo;

The family field assumes the following values for each processor family:

Table 8-1 Family Field Values and Descriptions

Value Description Processor Name

-1 An error occured in the query function.

 0 8086/88 processor i086™/i088™

 2 80286 processor i286™

 3 80386 processor i386

 4 80486 processor i486

 5 Pentium processor Pentium

 55 Pentium processor with MMX™ technology P55C

 6 Pentium Pro processor Pentium Pro
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GetProcessorInfo
Returns information
about the X86
Processor.

void RLGetProcessorInfo(ProcessorInfo *info);

info A pointer to a structure of type ProcessorInfo
that will contain all the details of the processor.
This structure is described above.

Discussion

The function RLGetProcessorInfo() gets information about the
processor that the application is currently running on. Currently,
information about the X86 family that the processor belongs to is returned
in the structure pointed to by info.
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Library Information

This section describes a function that can be used to query the version
number of the current version of the Recognition Primitives Library. The
function uses a structure LibraryInfo to return the information. This
structure is defined as follows:

typedef struct {
     int  major;

int  minor;
int  build;

} LibraryInfo;

The major, minor, and build fields are the major, minor, and build
numbers respectively of the current version of the library. For example if
the library revision is 2.0 build 27, then the fields in this structure are set
as

major = 2, minor = 0, build = 27

These fields are set to -1 in case there is an error in retrieving the
information.

GetLibraryInfo
Returns information
about the current
version of the
Recognition Primitives
Library.

void RLGetLibraryInfo(LibraryInfo *info);

info A pointer to a structure of type LibraryInfo
that will contain all the details about the version
of the library. This structure is described earlier.
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Discussion

The function RLGetLibraryInfo() gets information concerning the
version number of the Recognition Primitives Library that the application
is currently using. Currently, the major, minor, and build numbers of the
library are returned in the structure pointed to by info.
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Data types, 1-2

distance metrics. See Similarity measure

DotP, 5-2

Dynamic Time Warp functions, 7-1–7-10

Dynamic Time Warping functions

End point constraints, 7-2

EvalDtw, 7-4

PatternFree, 7-8

PatternIni, 7-7

E

End point constraints

for Dynamic Time Warping functions, 7-2

Error functions, 2-2–2-8

ErrorStr, 2-7

GetErrMode, 2-5

GetStatus, 2-4

ReDirectError, 2-7

SetErrMode, 2-5

SetStatus, 2-4

Error handler, adding, 2-13–2-14

Error Macros, 2-8–2-9

Error status codes, 2-9–2-11

ErrorStr, 2-7

EvalDtw, 7-4

EvalGaussMix, 5-11

F

Fft, 4-10

FftNip, 4-12

Fourier transform functions, 4-8–4-21

CcsFft, 4-18

CcsFftNip, 4-20

Fft, 4-10

FftNip, 4-12

FreeFftTbls, 4-7, 4-22, 4-25

RealFft, 4-14

RealFftNip, 4-16

FreeFftTbls, 4-7, 4-22, 4-25

FreeGaussMixServer, 5-12

FreeMFCCFilters, 4-31

function name conventions, 1-5

G

Gaussian Mixture functions, 5-7–5-12

EvalGaussMix, 5-11

FreeGaussMixServer, 5-12

InitGaussMixServer, 5-8

GetBit, 3-5

GetErrMode, 2-5

GetLibraryInfo, 8-14

GetNibble, 3-7

GetProcessorInfo, 8-13

GetStatus, 2-4

I

Image transformation functions, 6-1–6-6

CopyImage, 6-6

MirrorImage, 6-4

RotateImage, 6-2

InitGaussMixServer, 5-8

K

Kohonen network, 5-18
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L

L1Norm, 5-3

L2Norm, 5-4

Library information functions, 8-14–8-15

GetLibraryInfo, 8-14

M

Mahalanobis, 5-5

Mask Convolution, 6-7

Mask convolution functions, 6-7–6-9

MaskConvolve, 6-8

MaskConvolve, 6-8

Max, 3-35

MFCCInit, 4-29

Min, 3-34

MirrorImage, 6-4

MLPerceptron, 5-14

Multi-Layer Perceptron functions, 5-14–5-17

MLPerceptron, 5-14

O

Observation Likelihood estimates, 5-7

P

PatternFree, 7-8

PatternIni, 7-7

Preemphasize, 4-24

Processor information functions, 8-12–8-13

GetProcessorInfo, 8-13

R

RealFft, 4-14

RealFftNip, 4-16

ReDirectError, 2-7

Related publications, 1-1

RL ReDirectError(). See ReDirectError

RL? FreeMFCCFilters(). See FreeMFCCFilters

RL?bAbs(). See bAbs

RL?bAbs2(). See bAbs2

RL?bAdd2(). See bAdd2

RL?bAdd2s(). See bAdd2s

RL?bAdd3(). See bAdd3

RL?bAnd2(). See bAnd2

RL?bAnd2s(). See bAnd2s

RL?bAnd3(). See bAnd3

RL?bConvert(). See bConvert

RL?bConvertDown(). See bConvertDown

RL?bConvertUp(). See bConvertUp

RL?bCopy(). See bCopy

RL?bMpy2(). See bMpy2

RL?bMpy2s(). See bMpy2s

RL?bMpy3(). See bMpy3

RL?bNot(). See bNot

RL?bOr2(). See bOr2

RL?bOr2s(). See bOr2s

RL?bOr3(). See bOr3

RL?bSet(). See bSet

RL?bShiftL(). See bShiftL

RL?bShiftR(). See bShiftR

RL?bSub2(). See bSub2

RL?bSub2s(). See bSub2s

RL?bSub3(). See bSub3

RL?bXor2(). See bXor2
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RL?bXor2s(). See bXor2s

RL?bXor3(). See bXor3

RL?bZero(). See bZero

RL?CcsFft(). See CcsFft

RL?CcsFftNip(). See CcsFftNip

RL?CepstralMFCC(). See CepstralMFCC

RL?CopyImage(). See CopyImage

RL?DotP(). See DotP

RL?EvalDtw(). See EvalDtw

RL?EvalGaussMix(). See EvalGaussMix

RL?Fft(). See Fft

RL?FftNip(). See FftNip

RL?FreeGaussMixServer(). See
FreeGaussMixServer

RL?GetLibraryInfo(). See GetLibraryInfo

RL?GetProcessorInfo(). See GetProcessorInfo

RL?InitGaussMixServer(). See
InitGaussMixServer

RL?L1Norm(). See L1Norm

RL?L2Norm(). See L2Norm

RL?Mahalanobis(). See Mahalanobis

RL?MaskConvolve(). See MaskConvolve

RL?Max(). See Max

RL?MFCCInit(). See MFCCInit

RL?Min(). See Min

RL?MirrorImage(). See MirrorImage

RL?MLPerceptron(). See MLPerceptron

RL?PatternFree(). See PatternFree

RL?PatternIni(). See PatternIni

RL?Preemphasize(). See Preemphasize

RL?RealFft(). See RealFft

RL?RealFftNip(). See RealFftNip

RL?RotateImage(). See RotateImage

RL?ScalarConvertDown(). See
ScalarConvertDown

RL?ScalarConvertUp(). See ScalarConvertUp

RL?Sum(). See bSum

RL?VQKohonen(). See VQKohonen

RL?WinBartlett(). See WinBartlett

RL?WinBlackman(). See WinBlackman

RL?WinHamming(). See WinHamming

RL?WinHann(). See WinHann

RLErrorStr(). See ErrorStr

RLFreeFftTbls(). See FreeFftTbls. See
FreeFftTbls. See FreeFftTbls

RLGetBit (). See GetBit

RLGetErrMode(). See GetErrMode

RLGetNibble (). See GetNibble

RLGetStatus(). See GetStatus

RLSetBit (). See SetBit

RLSetErrMode(). See SetErrMode

RLSetNibble (). See SetNibble

RLSetStatus(). See SetStatus

RotateImage, 6-2

S

ScalarConvertDown, 8-2

ScalarConvertUp, 8-7

SCplx data type

Defined, 1-4

SetBit, 3-6

SetErrMode, 2-5

SetNibble, 3-8

SetStatus, 2-4

Signal pre-emphasis, 4-23

Similarity measure, 5-1

Similarity measure functions, 5-1–5-6
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Mahalanobis, 5-5

Speech-specific processing functions, 4-23–4-
31

CepstralMFCC, 4-27

FreeMFCCFilters, 4-31

MFCCInit, 4-29

Preemphasize, 4-24

Sum, 3-32

V

Vector arithmetic functions, 3-9–3-35

bAbs, 3-27

bAbs2, 3-28

bAdd2, 3-9

bAdd2s, 3-11

bAdd3, 3-13

bMpy2, 3-21

bMpy2s, 3-23

bMpy3, 3-25

bShiftL, 3-29

bShiftR, 3-30

bSub2, 3-15

bSub2s, 3-17

bSub3, 3-19

Max, 3-35

Min, 3-34

Sum, 3-32

Vector initialization functions, 3-1–3-8

bCopy, 3-1

bSet, 3-3

bZero, 3-4

GetBit, 3-5

GetNibble, 3-7

SetBit, 3-6

SetNibble, 3-8

Vector logical functions, 3-36–3-52

bAnd2, 3-36

bAnd2s, 3-38

bAnd3, 3-40

bNot, 3-52

bOr2, 3-47

bOr2s, 3-49

bOr3, 3-50

bXor2, 3-42

bXor2s, 3-44

bXor3, 3-45

Vector quantization, 5-18

Vector quantization functions, 5-18–5-21

VQKohonen, 5-19

VQKohonen, 5-19

W

WCplx data type

Defined, 1-4

WinBartlett, 4-3

WinBlackman, 4-4

Windowing functions, 4-1–4-6

WinBartlett, 4-3

WinBlackman, 4-4

WinHamming, 4-5

WinHann, 4-6

WinHamming, 4-5

WinHann, 4-6
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