PMON - Performance Monitoring Utility V2.2
Users Guide
10/15/96

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including infringement
of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this
document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark or products.
*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION 1995 CG-041493

Page- 1 , 10/29/96

L OBIECTIVE: e 3

2. SYSTEM REQUIREMENT S ...ttt ettt e et e e s eate e e s s ae e e e s sara e e e s enraeaeanns 3
3. PM ON TN ST AL L ATION: coeittitiiiieeieeeeeeeessses 3
4, MAIN OPERATION MODES..... s 3
4.1 USER INTERFACE .1uuuuiiiiiitttttiiessteesttassessstesssassssesssesssasassesssssssassssesssesssasssssesssesssssnsssesssesssssnsseesses 4
4.2 COMMAND LINE INTERFACE .1uuuuiiiiiettttiieestiestssisseesssesssassssesssssssssssseesssesssssstseestesssseeesseesneeain 4
4.3 PROGRAMMING INTERFACE ..1uuuiiiiiiettttiieeesseestsssssessssesssasassessssessssssssesssessssssseesssesssssnteeesseessnnneeesnns 5
DL PMON FEATURES......coeeeeeeeeeietteteeteteeeeeetessessssssassssssssssssassessssssssssssse s s s s s s s s s s s s s s s s ssssssssssssssssnsssnnnnnnnnnnnns 5
5.1 CURRENT FILESAND VERTON NUMBERS: ..1.uuttiiitetttttiiesstessttsaiesssessssssssessseessssseesseesssseesssesss 5
LI T =Y /(I TP 5
BB THEDLL e 6
5.4 THE UTILITY MAIN FEATURES. ...t eeiitetttttsse e st sestbbtasssesssesabbasesssssssbbaas s sesssess bbb seesseessbbaa s eessseesbaannses 6
4.1 EVENE SEIECHION ... s 6
A 1A 1A (o] o SRR 7
5.4.3 AAAITioNal SEEEINGS.....ceitiiiiiie ettt ettt e e be et e e e sbe e e sbe e e sabe e sabe e e beeeees 8

5.5 COMMAND LINE OPERATION .1tuuuiiiiiiettttiiieesisesssssaseesssesssssassessssessssaseesseesssseesseest et 9
5.5.1 Command LiNE Par@mMELErS. s 9
5.5.2 Command Line EXAMPIES.......cocueiiiiieiieiiie ettt ettt et sae e st be e nbee e saee s 11

5. PIMIOIN DA T A FILES...ooiiiiiiiiiiiiiiiiieeieeeeessessnsnns 11
B.1 INI FILES/ LOG FILES: ... eieeei e 11

B. 1.1 PIMIONLINI e nnns 11
B.1.2 EVENTSI NI e aann 12

Lo G 3 o I T TP 13

B. 0.4 TTACE il s 13

7. THE PMON AP S ..ooeeeieitittiteeeeeeeseessnsnns 15
8. CONSIDERATIONS. ...ceeeeeeeeeteteettteeeteseesssseseessessessnsnnnns 17
L I o 1 A A S TSRS 18

Page- 2 , 10/29/96

1. Objective:

PMON is a performance monitoring tool for Intel processors that retrieves information about a sequence
of code that is running under Windows* 95. This information may then be used for various purposes,
including performance tuning, performance validation, code coverage, and system tuning.

2. System Requirements:

Windows* 95
Intel Pentiuma processor, Pentium Pro processor, or Pentium processor with MM Xa technology.

3. PMON Installation:

Create anew directory (e.g. : C:\PMON) and unzip the PMON filesinto it. The executables are:
PM32_APP.EXE
PM32 DLL.DLL
PMON.VXD

The zipped file may aso include an additional file:

EVENTS.INI
Note: If thisfileis not included, it will be created by the Pmon Utility.

4. Main operation modes:
Figure 1 illustrates the basic components of PMON. These are described in detail below.

APPs under tes

APPLICATION
SOURCE CODE

MS TEST

PM32_APP.EXE

S

PMON API PMON ARI

PM32_DLL.DLL

PMON API

A A

y

CPU -
PMON.VXD

Counters

Figure 1

Page- 3 , 10/29/96

4.1 User interface

In this mode, referred to hereafter as “Pmon Utility”, you operate the utility interactively while
running the application you want to test. Refer to Figure 2 for the features described below.

PMON Utility ¥2.2 I]
LConfiguration Setting Exit Start Button

Time Stamp /
| 2voi4g7anvodl Stop [Acc | Start [Delay]| Stop jl

£ [0S UM azk

'-.-'E:r‘ltﬂ.l: 743204 p Uzer|002 = o0 - Drop_Down
/ [DCU - M Lines Out = List Boxes

Counters

. \
Displays | ¥ 05 LM ask
Event 1 5482408 " LIserIUEG j Iunj

[DCU - M Lines Out =1

Hello 'win 95 ﬂ
[MI File [C:\pmonpronn | Found

FRead PMC From Lewvel 3 iz Enabled by 1M file

Notification CPU ID: Family=E, Model=3, Step=0, Feature= S0FBFF - M= te
Window Funring Witk PerfEwtSel 0; 00410047, PerfEwt5Sel 1: 00030047 =

Figure 2

First, select the events you want to measure through the two drop-down list boxes, and then start the
counters by pushing the “ Start” button. The “Start” button will now display “Stop.” Y ou will see the
counters updated every second. When you hit the “Stop” button, the summary of this measurement
will be displayed in the notification window. You can then copy these messages to the Windows*
clipboard or to afile.

There are several options for starting/stopping the counters, and for logging the results into a file.
For details, see the explanations later in this guide. Also, the source code of this utility is supplied
with this package and may be used for reference or modified as needed.

4.2 Command line interface

In this mode you activate the PMON utility along with some command line parameters. The
command line parameters allow you to activate the utility, select the events, start and stop the
counters, and log the results to afile. Command line implementation can be done by running it from
a Windows 95 DOS* box, by creating and editing the properties of the utility’s desktop icon or by
using atest tool utility such as Microsoft* Visual Test.

Note: Each time you call this utility it loads again and executes.

Page- 4 , 10/29/96

4.3 Programming interface

In this mode, referred to hereafter as “Pmon API”, you interface with the DLL APIs from your code
or test tool utility. Loading, initializing the DLL, starting/stopping and retrieving the information is
done by the user from the application code. Thisis most accurate and non-intrusive mode, however it
regquires some programming and you must have the source code of the application under test. This

mode can also be used with atest tool utility.

5. PMON Features

Table 1 lists the features of PMON, which are described in detail below.

Feature

User / Command

Programming/AP

counters control registers

line interface | interface
Event selection Yes Yes
Start/Stop counting Yes Yes
Delayed start Yes Yes (User
implements)
Accumul ate start Yes Yes (User
implements)
Stop counting and log Yes Yes
Install new events Y es (events.ini) Yes
Read countersfromring3 | Yes Yes
Send event directly to No Yes

Tablel

5.1 Current Files and version numbers:

PM32_APP.exe Theapplication - V2.2

PM32 DLL.dII The DLL
PMON.vxd The VxD

Warning: All version numbers must be as listed above or Pmon will not work correctly. You can
check the DLL and VxD version numbers by looking at the first two lines in the Naotification window.
The utility checks the version numbers and displays a warning in the notification window if they do

not match.

5.2 The VxD

The VD is dynamically loaded the first time you activate the DLL and unloaded when you exit.
Through the API or via the command line parameter you have the option to specify to unload the

VXD after exit.

When you use the PMON utility the VXD stays loaded by default. This enables the VXD to keep
previous activation records and report them back later to the DLL. Thisway you can activate the
tool from one application and stop it from another application and get the original activation

event and data

Page- 5 , 10/29/96

-V22
-V22

The VxD isnonintrusive. It issmall, 7KB and is not active if you don't call it. No interrupt
chaining is used.

5.3 The DLL

The DLL implements a set of APIs and communicates with the VxD. It should be loaded by the
application (using the PMON utility, or by loading it within the application code), and it is
unloaded automatically when the last application that uses it exits.

5.4 The Utility Main features

5.4.1 Event Sdlection

You can select an event using the index drop-down list box or using the event drop-down list box.
Choosing the first letter of the string will move the selection to the first event that starts with that letter.
Thiswill speed up the event selection.

When you exit, the last settings are saved in the pmon.ini file in the same directory as the Pmon Utility.
These events are selected as the defaults when the Pmon Utility starts again, if the counter are not
running. If counters are running at launch time, the Pmon Utility will display the current counter names
and values and these will be written to the notification window.

The variables used in event selection are (refer to Figure 3):

Event: The name of the event being monitored.

Index: Theindex of the event as used by the Pmon Utility.

Umask: This drop-down list box exists only if the processor is Pentium Pro. The value here
combines with the event value to select the actual event to count.

Ring: The privilege level of the events to be watched.

Page- 6 , 10/29/96

Accumulate
Start

Delayed Start
Simple
— - Start/Stop
PMOHN Utility ¥2.2
LConfiguration Setting Exit
Time Stamp
| 2voi4g7ao7o41 Stop e | Stat[D elay]| Stop

Ring - s UIMask
I r'LF ser|003 = I:IEI;i Umask

[DCU - M Lines Out =TT

I azk

Event 1 Im MJ II:IEIJ
|W =1

Hello 'win 95 ﬂ
[MI File [C:\pmonpronn | Found

FRead PMC From Lewvel 3 iz Enabled by 1M file

CPU ID: Family=6, Model=3, Step=0, Feature= S0FBFF - kb4 te
Runring Witk PerfEwtSel 0; 00410047, PerfEwt5Sel 1: 00030047

Index

Figure 3

The files associated with event selection are:
PMON.INI: Stores the last selected events and initializes the next instance of the Pmon Utility to
these events.
EVENTS.INI: Modify this to add events not currently programmed into the Pmon Utility.

5.4.2 Start/Stop
Refer to Figure 3 for the following:

Simple Start/Stop: Use this for immediate starting and stopping of the counters.

Start [Delay]: For adelayed start of the counters, first click on “Configuration” from the menu bar
and then set the following parameters in the Configuration dialog box (see Figure 4):
1. Delay after Start: Select the number of seconds to wait before starting the counters.
2. Auto Stop After: Y ou can select when you want to stop counting by entering the number of
seconds here, or you can click on the simple Stop button to stop the counters immediately.

Start [Accumulate]: A Windows timer is set to the requested interval and on each tick, it logs the
counters values to a table in memory. The accuracy of thistimer is at the mercy of the Windows OS
and the running applications at that time. This might be okay as we are logging the cycles el apsed
and most of the time we are interested in the difference between consecutive entriesin the table. The
results are written a file named trace.txt in the Pmon directory.

Page- 7 , 10/29/96

To use the Accumulate Start, first click on “Configuration” from the menu bar and then set the
following parametersin the Configuration dialog box (see Figure 4):
1. Number of Samples: Select the number of samplesto take.
2. Sampling Interval: Select the length of the interval between each sample (in milliseconds).
3. Message window (optional): Y ou can enter a descriptive line here to be written to trace.txt.
Stop message at the notification window: Refer to Figure 3. When counters are stopped the Pmon
ut|I|ty displays a summary of the last run in the notification window. The information provided is:
The actual programmed hexadecimal values of the performance registers
The event string and the event index that were chosen for counter 0 and counter 1
Thering selection
The counter values and the elapsed cycles from start to stop

Configuration |

—Accumulate Parameters
MNumber of 5 aniple: ([FTTE

OE
S ampling [nterval [ms] l-| on -
Cancel |

Dielap After Start [Sec] |2
Auto Stop After [Sec) |3

Mezzage to put into the log file

Figure4

5.4.3 Additional Settings
These settings are accessed by selecting the “ Setting” option on the menu bar (see Figure 5).

Auto Stop: Check this option to have the counters always auto stop after the time specified in the
Configuration dialog box (see Figure 4).

Page- 8 , 10/29/96

PMON Utility V2.2 M= E3

Setting WS

LConfiguration
Tirne Stan Auto Stap

I 27160434, Alwap: Save Results to a File

Sta_l,l On Top
Event O I we Selection to |_|||:|E| ard

IDELI M L_ir'na Sav Selection te-FlEE-——

Ik azk
Event1| 5242389 p |_|$E,|EIIZI3 =] oo =]
|DCLU - M Lines Dut I
Hella win 95 il

[MI File [C:\pmonhprmon.in | Found

FRead PMC From Lewvel 3 iz Enabled by IMI file

CPU 1D Family=6, Model=3. Step=0, Feature= B0FBFF - Mk te
Running Witk PerfEvtSel 0: 00410047, PefErvtSel 1: 00030047

Figure5

Always saveresultsto file: Check this option to always have the counter data saved to alog file.
The file will be named pmon32.log and it will be saved in the same directory as the Pmon Utility. If
the file already exists, the new data will be appended to the end of thefile.

Stay on top: Check here to keep the Pmon Utility always on top.

Save Selection to Clipboard: Highlight an areain the Notification window and then click here to
have the area copied to the Windows clipboard.

Save Selection to FILE: Highlight an areain the Notification window and then click here to have the
area copied to afile. The file name will be named trace.txt and it will be saved in the same directory
asthe Pmon Utility. If thefile already exists, the new data will be appended to the end of thefile.

5.5 Command Line Operation

5.5.1 Command Line Parameters
Table 2 lists the parameters that can be used with Pmon in the command line mode of operation.

Page- 9 , 10/29/96

Table 2: The Utility Command Line options

Command Description Example
[start Start the counters now [start
/TO=n Specify the index for the event you want to activate. See | /T0=5
/T1=m Appendix A for the events and their indices. /T1=20
/TOCPL=x Set thering level at which you want to count the events. | /TOCPL=30 - counter O
/T1CPL=y counts all relevant eventsiif
30-level 012 and 3 coderunsinring 0,1,2,3
3-onlyleve 3
O-onlylevel 0 /T1CPL=3 - counter 1
counts all relevant events if
coderunsin ring 3
/batch Activate the utility without showing the GUl/interactive | /BATCH

mode and exits at the end. The VxD will stay loaded
after exit.

IM SG=zzzyyyxxx

Write this string to the log file as a reference.

IMSG=Test20 Just Before
Lunch

/STOP Stop the counter, read results and report /stop
/FILE=xyz.log When stopped, will log the results to this file (appended | /file=July23.1og
to the end) with regular date and time stamp. Note, no
spaces around the equal sign
/ACC_START Start counting and sample the counter every period of /ACC_START
time (/INTERVAL). Put readings into a buffer. At the /SAMPL S=5000
end write the whole table into afilee TRACE.TXT INTERVAL=1000
/SAMPLES= Number of samples see above example
/INTERVAL= Sample rate [in mg| see above example

/DELAY_START

Start counting after the delay.

/DELAY_START
/DELAY=5

/DELAY=

Delay [sec]

see above example

Note: The command line is not case sensitive.
Table 3 summarizes the parameters that are available with each mode of operation.

Table 3: Main Command line options Summary

Pur pose /BATCH [/ACC_START |[/START [/STOP [/DELAY_START |[/FILE=
/INTERVAL = /DELAY= IMSG=
/SAMPLES=

Start & Exit X X

Stop & Exit X X X

Start with Delay & Exit| X X

Accumulate & X X

Exit

Page - 10 , 10/29/96

5.5.2 Command Line Examples
The following are examples of command lines.

1. pron /t0=1 /T1=12 /t0cPl =30 /T1CPL=0 /StaRt /batch
Timer 0 is selected with event #1 with level 0,1,2,3
Timerl is selected with event #12 with level 0,1,2,
Start the timers now.
Don't show the pmon GUI, just exit at the end.

2. prmon32 /stop /file=log.log /meg= Test20 Just_Before_Lunch

These are the resultsin the log.log file:

--------- Log XXX---------
Fri Sep 20 13:04:00 1996

CPU ID: Family= 5, Model= 2, Stepping= 11, FeatureFl ags=

User Message: Test20_Just_Before_Lunch

Counter 0: 1294383

Counter 1: 11030874

El apsed cycles (TSC): 11300

Cnt0 E 02570243 Ring: O Mask0=00
Cntl E 00000000 Ring: O Mask1=00
Event 0O[4]: Data Read M ss

/ bat ch

1BF

Event 1[23]:Instructions Executed in the v-pipe e.g. parallelism

--------- Log End------

6. PMON Data Files
6.1 INIfiles / Log files:

6.1.1 PMON.INI

The pmon.ini file contains start up configuration lines, which may be edited as needed. An exampleis
shown in Figure 6. If you are using the Pmon Utility GUI, pmon.ini will be updated automatically each

time you close the application.

PMON. I NI
[Initialization Val ues]
Read PMC From Level 3=ON

Event 0 Last Sel ection=27
Event Last Sel ecti on=2

[EnY

Event
Event

Last Ring Sel ecti on=0
Last Ring Sel ection=0

= O

Last Mask Sel ecti on=0x00
Last Mask Sel ecti on=0x00

Event
Event

= O

Interval [in ns]=1000
Delay [in ns] =4

Buf fer Size=5

Auto Stop Tinme [in sec]=3

Figure 6

Page- 11 , 10/29/96

Parameter Explanation:
Read PMC From Level 3
The options are ON or OFF. Default is ON. Thisinstruction is only available on Pentium
Processor with MM X technology and on Pentium Pro family. It allows reading the counters
directly fromring 3.

All the other parameters

Used by the utility to save last usage before exit and restore those entries when launched again.
Note that if the counters are running on the next launch, these parameters are not used and the
current counter setting are used.

6.1.2 EVENTS.INI

The events.ini file contains information about additional events which are not hard-coded into the Pmon
Utility. An example is shown in Figure 7 below. A description of how to add events to Pmon through the
events.ini file follows.

EVENTS. I NI
[Pentium Addi ti onal Events - Counter 0]
Nunber OF New Event s=0

[Pentium Addi tional Events - Counter 1]
Nunber OF New Event s=0

[Pentium Pro Additional Events]
Nunber O New Event s=27

E str_11=Transitions FP to MW
E enc_11=0xCC

E nmsk_11=0x01

E i dx_11=92

E str_12=My favorite Event
E enc_12=0x17

E nsk_12=0x01

E idx_12=0

Figure?7

Parameter Explanation:
Note: The parameters are case sensitive!!!

Thereare 3 basic sections:
[Pentium Additional Events - Counter O]
[Pentium Additional Events - Counter 1]
[Pentium Pro Additional Events]
The utility detects under which processor it runs and looks for the appropriate section.

Number Of New Events=27
This parameter specifies how many new events exist in this section. In this example 27
new events should follow this section. Each event should have four lines with a
consecutive index (starting from 1) embedded into the parameter name. For example
E str 12, refersto the 12th entry.

Page - 12 , 10/29/96

E_str_n=
astring that represents this event. Will be used in the drop-down list box and
for the datafiles.

E enc n=
a hex number (example: 0x36) which is the event’s encoding.

E_msk_n=
a hex number (example: OxFF) which is the event’s Umask (relevant for
Pentium Pro Processor Family).

E idx n=
A decimal number (starting from 0) for the index in the Application/DLL event
data base. It inserts the new event into this entry of the data base and overrides
the previous event.

The first unoccupied entries in the data base for this version of the utility are:
Pentium processor: 60

Pentium Pro Processor: 82

The table contains 120 entries.

6.1.3 Log File

Figure 8 shows an example of the log file that is generated when you ask for this option, either by setting
“Always Save Results to a File” from the “ Setting” menu, or by command line parameter.

Log File

--------- Log XXX---------
Fri Sep 20 13:04: 00 1996
CPU ID: Family= 5, Model = 2, Stepping= 11, FeatureFl ags= 1BF
User Message: Test2A
Counter O: 1294383
Counter 1: 11030874
El apsed cycles (TSO): 11300
Cnt0 E: 02570243 Ring: O Mask0=00
Cntl E 00000000 Ring: O Mask1=00
Event 0[4]: Data Read M ss
Event 1[23]: Instructions Executed in the v-pipe e.g. parallelism
--------- Log End------

Figure8

Thefileiscreated if it does not exist and then appended with thisinformation. It includes the time the
data was written, along with information about the CPU. Also included are the user message (if given)
and the data from the counters.

6.1.4 TraceFile

Figure 9 shows an example of the trace file that is generated when you select the accumulate mode, either
by clicking on the “ Start[Acc.]” button, or by command line parameter.

Page - 13 , 10/29/96

Trace. t xt
--->> Trace From Fri Sep 20 14:08:21 1996
CPU I D Fam | y Mbdel St epping Feat ur eFl ags
5 2 11 1BF
User Message: My second attenpt
Interval used: 500 [ms]
Cnt0 Ring: 0 Mask0=00
Cntl Ring: 0 Mask1=00
Event 0[32]: Hardware Interrupts
Event 1[27]: FLOPs
Sanpl e# Cnt0 Cntl Elapsed Cycles
00001 34 25 46157524
00002 14 44 19760606
00003 35 24 46143440
00004 14 43 19775050
00005 33 24 46153248
00006 16 43 19757254
00007 37 24 46153758
00008 14 43 19758794
00009 33 24 46143502
00010 16 43 19765716
00011 32 22 41175440
00012 15 45 19746536
00013 34 23 46160212
00014 17 44 19761174
00015 35 23 46176638
00016 15 44 19731874
00017 36 23 46156850
00018 15 44 19752132
00019 40 23 46158564
Tot al : 485 628 634388312
--------- End ------
Figure9

Each entry here represents the incremental counts that occurred between two consecutive samplings. For
example, sample # 2 reads “ 14 counter 0”. This means that Counter O was incremented by 14 after
sample #1 was taken.

Note: The above format is atab separated in the file, which can be easily imported into a spread sheet
(CSV format).

Page - 14 , 10/29/96

7. The PMON APIs:

The APIsdefinedin PM32 _DLL.DLL arelisted in Table 4 below.
Table4: The PMON APIs

Category

API

Description

Pnon32l ni t

Load/connect to the VxD.

Init

Pnron321 ni t BEx

L oad/connect to the VxD + Option to
unload VXD on exit

Pnon32C ose

Close connection to DLL/VXD.
Depending on how the DLL was
initialized, this may or may not unload
the VxD.

Pnon32I nst al | Event

Install a new event into a requested entry
inthe DLL event data base. This
overrides any existing entry.

The table below shows the occupied
eventsin the DLL data base. Pentium
Pro Processor Events occupy entries
from 0-81. Pentium Processor Events
occupy entriesfrom O - 61. It is
advisable to add your events to the
unoccupied entries. Both tables have 120
entries.

Prmon32Di sabl eRDPMCRI ng3
Prmon32Enabl eRDPMCRi ng3

Allows/disables reading the counters
from ring3. Only available on Pentium
Processors with MM X Technology or
Pentium Pro Processors.

Operation

Prmon32St ar t

Program the events, start counting

Pnon32Start Di r ect

Send the value directly to the counter
control registers. This also attaches
strings to these events so that when these
counters are stopped and the EventToStr
routines are called, these strings will be
returned.

Pmon32St art Ex

Program the events, start counting.
Additional support for Umask field.

Pmon32St opAndReadCount er s

Stop counters, read results.

St at us

Pnon32ReadCount er s

Read counters on the fly.

Pnon32ReadTSC

Read the time stamp counter.

Prmon32St at us

Running/stopped, which events were or
are being counted.

Pmon32Ar eCount er sRunni ng

TRUE/FALSE for counters running.

Pmon32Event OToSt r
Prmon32Event 1ToSt r

Returns a pointer to string for agiven
event index.

The formal definitions for these APIs are (asincluded in thefile DLL_IF.H):

DWORD (FAR *Pron32Init)
DWORD (FAR *Pnpbn32C ose)
DWORD (FAR *Pnpn32St at us)

(struct
(void);
(struct

BOOL (FAR *Pnon32Ar eCount ersRunning) ();

Page - 15 , 10/29/96

Pnon32Ver si on *ver);

Pmon32Reply *Reply);

char
char

(FAR

*Pnon32Start)

(BYTE Event 0, BYTE Event ORi ng,
BYTE Event 1, BYTE Event 1Ri ng);

(FAR *Pnon32St opAndReadCount ers) (struct Pmon32Reply *Reply);
(FAR *Pnon32ReadCount er s) (struct Pmon32Reply *Reply);
(FAR *Pnon32ReadTSC) (struct Pmon32Reply *Reply);
(FAR *Pnon32Enabl eRDPMCRI ng3) (void);
(FAR *Pnon32Di sabl eRDPMCRi ng3) (void);
*(FAR *Pnon32Event 0ToSt r) (BYTE i ndex) ;
*(FAR *Pnon32Event 1ToStr) (BYTE i ndex) ;
(FAR *Pnpn32St art Ex) (struct Pmon32St art Cnd *COmd) ;
(FAR *Pnobn32StartDirect) (DWORD EO, DWORD E1, char *strO,
char *strl);
(FAR *Pnon32lnstal |l Event) (BYTE Cnt, BYTE I ndex,
BYTE Encoding, BYTE Mask, char *str);
(FAR *Pnon32I ni t Ex) (struct Pnmon32St art Cnd *Cnd,

struct Pnon32Version *ver);

The application communicates with the DLL using the following structure:

struct Pnmon32St art Cmd{

t he

struct

BYTE
BYTE
BYTE
BYTE

BYTE
BYTE

BYTE
BYTE

Event O;
Event 1;
Event ORi ng;
Event 1Ri ng;

Event OMask;
Event 1Mask;

Fl g1;
Fl g2;

~
~~

~
~~

~~

I ndex as defined by the table bel ow (Section 9)
I ndex as defined by the table bel ow (Section 9)
O0-ring0, 3-ring3 30-ring 3 and 0

Only for Pentium Pro processors. As defined by
architecture

res
res

unl oad_vxd_on_exi t; /1 TRUE - VxD will be unloaded on exit

Fl g3;
Fl g4;
Fl g5;

Res1;
Res?2;
Res3;

Pmon32Repl y{

TO_I;
TO_h;
T1 |;
T1 h;
TSC | ;
TSC h;

~—~
~~~

El apsedTi me_| ;
El apsedTi ne_h;

TSCLast _| ;
TSCLast _h;
Event O;
Event 1;
Event ORi ng;
Event 1Ri ng;
Event OMask;
Event 1Mask;
padl ;
pad2 ;

st at us;

Page - 16 , 10/29/96

/

/

Counter/event 0 LSB
Counter/event 0 LSB
Counter/event 1 NMSB
Counter/event 1 NMSB
/1 current Tinme Stanp LSB
/'l current Tinme Stanp MSB

I ndex as known by the DLL

/1 structure alignnent



DWORD resli;
DWORD res2;
DWORD res3;
DWORD res4;
DWORD resb5;
DWORD res6;

}s

struct Pmon32Ver si on{

char  VxDVersion[ 32]; /'l A string

char DLLVer si on[ 32]; /'l A string

i nt VxDMaj or ; /'l Represents the VxD major version nunber
i nt VxDM nor ; /'l Represents the VxD m nor version nunber
i nt DLLMaj or; /'l Represents the DLL mmjor version nunber
i nt DLLM nor; /'l Represents the DLL m nor version nunber
char res2[ 16];

8. Considerations
1. Thisversion runs only on Windows* 95.

2. One can use batch mode to set the required events and set the option of reading the counters from level
3 (Thisisthe default if thislineis omitted). Then, the application can read the results (the counters)
directly from its code (ring 3).

3. Two or more instances of the PMON Utility are allowed. Notice that the second instance will refresh its
event selection only once at start, but won’t be able to report on the right selection dynamically as the
changes take place by other instances. On the other hand, it will show the changes in the counter totals.
Also, if the second instance is the one that initiates the stop, it will report the right event.

4. The Pmon utility does not use all the options provided in the performance monitoring of the
processor. Y ou can observe the exact programming value that the tool is using by looking at the stop
message in the notification window. However the APIs allow the programmer to directly interface with
the register and utilize more features.

5. Notice that the Pentium Pro events are programmed with E bit set to 0. This meansthat all events are
aduration type and not occurrence one.

6. Inthe Pentium Pro case some events are only applicable to a specific counter. The current version of

the Pmon utility does not prevent you from using it with the wrong counter. However the description of
the event notifies you with the correct counter to use. See the Pentium Pro event table, events 55-60.

Page- 17 , 10/29/96



9. The Events

The following are the events and their indices. These are the default programming in the application data
base and in the DLL data base. It also correlates to the result indicesin the log file.

Each table consumes 120 entries and the unoccupied ones are different from Pentium to Pentium Pro
tables.

Note that indices below are the indices defined by the tool and they do NOT necessarily match the ones
described in the processor programmer reference manual .

Pentium Processor Eventsfor Counter O

I ndex Event Encodi ng
0 Dat a Read 0x00
1 Data Wite 0x01
2 Data Read or Data Wite 0x28
3 Data TLB M ss 0x02
4 Data Read M ss 0x03
5 Data Wite M ss 0x04
6 Data Read or Data Wite Mss 0x29
7 Wite (hit) to Mor E state lines 0x05
8 Dat a Cache Lines Witten Back 0x06
9 Ext ernal Snoops 0x07
10 Ext ernal Data Cache Snoop Hits 0x08
11 Menory Accesses in Both Pipes 0x09
12 Bank Conflicts 0x0a
13 M sal i gned Data Menory or |I/O References 0x0b
14 Code Read 0x0c
15 Code TLB M ss 0x0d
16 Code Cache M ss 0x0e
17 Any Segnent Regi ster Loaded 0xOf
18 Br anches 0x12
19 BTB Hits 0x13
20 Taken Branch or BTB Hit 0x14
21 Pi pel i ne Fl ushes 0x15
22 I nstructions Executed 0x16
23 Instructions Executed in the v-pipe e.g. parallelism | 0x17
24 Locked Bus Cycle Ox1c
25 1/O Read or Wite Cycle Ox1d
26 Non- cacheabl e nenory reads Ox1le
27 FLOPs 0x22
28 Br eakpoi nt match on DRO Regi ster 0x23
29 Br eakpoi nt match on DRl Regi ster 0x24
30 Br eakpoi nt match on DR2 Regi ster 0x25
31 Br eakpoi nt match on DR3 Regi ster 0x26
32 Hardware Interrupts 0x27
33 Clocks while a bus cycle is in progress (bus util.) 0x18
34 Nunber of clocks stalled due to full wite buffers 0x19
35 Pi peline stalled waiting for data nenory read Oxla
36 Stall on wite to an E or Mstate line 0x1b
37 Pi peline stalled due to addr generation interlock Ox1f
38 Bus ownership | atency Ox2a
39 MW i nstructions executed in U pipe 0x2b
40 Nunber of L1 Mstate line sharing 0x2c
41 EMMVS i nstructions executed 0x2d
42 Bus utilization due to processor activity 0x2e
43 Saturated MWX instructions executed Ox2f
44 Cycles not in HLT state 0x30

Page - 18 , 10/29/96



Pentium Processor Eventsfor Counter O (continued)

I ndex Event Encodi ng
45 MU data nenory reads 0x31
46 Fl oating point stalls 0x32
47 Dl starving but instruction FIFO enpty 0x33
48 MU data nenory wites 0x34
49 Pi peline flushes due to wong branch prediction 0x35
50 MW m sal i gned data nenory reference 0x36
51 Returns m ss predictions 0x37
52 MW Ml tiply interlock 0x38
53 Ret urns execut ed 0x39
54 BTB bogus entry detected Ox3a
55 MW writes backed - pipe stalled 0x3b
56 Reserved 0x3c
57 Reserved 0x3d
58 Reserved 0x3e
59 NULL event 0x3f
60 Reserved OxFF
61 Reser ved OxFF
118 Reserved OxFF
119 Reserved OxFF
Pentium Processor Eventsfor Counter 1
I ndex Event Encodi ng
0 Dat a Read 0x00
1 Data Wite 0x01
2 Data Read or Data Wite 0x28
3 Data TLB M ss 0x02
4 Data Read M ss 0x03
5 Data Wite M ss 0x04
6 Data Read or Data Wite Mss 0x29
7 Wite (hit) to Mor E state lines 0x05
8 Dat a Cache Lines Witten Back 0x06
9 Ext ernal Snoops 0x07
10 Ext ernal Data Cache Snoop Hits 0x08
11 Menory Accesses in Both Pipes 0x09
12 Bank Conflicts 0x0a
13 M sal i gned Data Menory or |I/O References 0x0b
14 Code Read 0x0c
15 Code TLB M ss 0x0d
16 Code Cache M ss 0x0e
17 Any Segnent Regi ster Loaded 0xOf
18 Br anches 0x12
19 BTB Hits 0x13
20 Taken Branch or BTB Hit 0x14
21 Pi pel i ne Fl ushes 0x15
22 I nstructions Executed 0x16
23 Instructions Executed in the v-pipe e.g. parallelism | Ox17
24 Locked Bus Cycle Ox1lc
25 1/0O Read or Wite Cycle Ox1d
26 Non- cacheabl e nenory reads Ox1le
27 FLOPs 0x22
28 Br eakpoi nt match on DRO Regi ster 0x23

Page - 19 , 10/29/96




Pentium Processor Eventsfor Counter 1 (continued)

I ndex Event Encodi ng
29 Br eakpoi nt match on DRl Regi ster 0x24
30 Br eakpoi nt match on DR2 Regi ster 0x25
31 Br eakpoi nt match on DR3 Regi ster 0x26
32 Hardware Interrupts 0x27
33 Clocks while a bus cycle is in progress (bus util.) 0x18
34 Nunber of clocks stalled due to full wite buffers 0x19
35 Pi peline stalled waiting for data nenory read Oxla
36 Stall on wite to an E or Mstate line 0x1b
37 Pi peline stalled due to addr generation interlock Ox1f
38 Bus ownership transfers Ox2a
39 MUWX i nstructi ons executed in V-pipe 0x2b
40 Nunber of L1-line sharing 0x2c
41 MU ---> FP transitions 0x2d
42 Wites to non-cacheabl e nenory 0x2e
43 Sat ur at ed MMX oper ati ons execut ed Ox2f
44 Ex stage stalled due to a D-TLB m ss 0x30
45 MW data read m sses 0x31
46 Taken branches 0x32
47 Dl starving but only 1 inst in inst FIFO 0x33
48 MW data wite m sses 0x34
49 Pi peline fl ushes-wong branch prediction in WB-Stage | 0x35
50 MW wait nenory read - pipe stalled 0x36
51 Returns predicted (correctly & uncorrectly) 0x37
52 MU store stall due to previous operation 0x38
53 RSB over f | ows 0x39
54 BTB mi ss-prediction or a not-taken branch Ox3a
55 Stall on MK wite to E or MIline 0x3b
56 Reserved 0x3c
57 Reserved 0x3d
118 Reserved OxFF
119 Reserved OxFF

Pentium Pro Processor Events
I ndex | Encoding | Umask Event
0 0x43 0x00 DCU - Data Mem Refs
1 0x45 0x00 DCU - Lines In
2 0x46 0x00 DCU - MLines In
3 0x47 0x00 DCU - M Lines CQut
4 0x48 0x00 DCU - M ss Qutstandi ng
5 0x80 0x00 I FU - iFetch
6 0x81 0x00 IFU - i Fetch M ss
7 0x85 0x00 IFU - ITLB M ss
8 0x86 0x00 IFU - Mem Stall
9 0x87 0x00 IFU - Inst Lrngth Decoder Stall

L2 Cache

10 0x28 OxO0F L2 Instructions Fetches [ MESI]
11 0x29 OxO0F L2 Data Loads [ MESI
12 Ox2A OxO0F L2 Data Stores [MESI]
13 0x24 0x00 Lines Allocated in L2
14 0x26 0x00 Li nes Renoved from L2
15 0x25 0x00 Modi fied Lines ALLOCATED in L2
16 0x27 0x00 Modi fied Lines REMOVED from L2

Page - 20 , 10/29/96




Pentium Pro Processor Events (continued)

I ndex | Encoding | Umask Event
17 Ox2E OxO0F L2 Requests [ MESI]
18 0x21 0x00 L2 Address Strobes
19 0x22 0x00 Cycl es Data Bus was BUSY
20 0x23 0x00 Cycl es Data Bus was BUSY i n READ
Ext ernal Bus Logic (EBL)?2
21 0x62 0x00 DRDY is asserted [Sel f/Processor]
22 0x62 0x20 DRDY is asserted [Any/any agent]
23 0x63 0x00 LOCK is asserted [ Sel f
24 0x63 0x20 LOCK is asserted [Any
25 0x60 0x00 BUS requests out standi ng
26 0x65 0x00 Burst Read transactions [Self
27 0x65 0x20 Burst Read transactions [Any
28 0x66 0x00 Read for Omership Transactions [ Self
29 0x66 0x20 Read for Omnership Transactions [Any
30 0x67 0x00 Wite Back Transactions [Self
31 0x67 0x20 Wite Back Transactions [Any
32 0x68 0x00 Instructi on FETCH Transactions [ Sel f
33 0x68 0x20 I nstruction FETCH Transacti ons [ Any
34 0x69 0x00 BUS I nval i date Transactions [ Self
35 0x69 0x20 BUS I nval i date Transactions [Any
36 Ox6A 0x00 BUS Partial Wites [Self
37 Ox6A 0x20 BUS Partial Wites [Any
38 0x6B 0x00 BUS Partial Transactions [Self
39 0x6B 0x20 BUS Partial Transactions [Any
40 0x6C 0x00 BUS Trans 10 [Self
41 0x6C 0x20 BUS Trans 1O [Any
42 0x6D 0x00 BUS DEFFERED Transacti ons [ Sel f
43 0x6D 0x20 BUS DEFFERED Tr ansacti ons [ Any
44 Ox6E 0x00 BUS BURST Transactions [Sel f
45 Ox6E 0x20 BUS BURST Transactions [Any
46 0x70 0x00 BUS- ALL transactions [Self
47 0x70 0x20 BUS- ALL transactions [Any
48 Ox6F 0x00 BUS- Menory Transactions [Self
49 OX6F 0x20 BUS- Menory Transactions [Any
50 0x64 0x00 BUS- cycl es processor RECElIVI NG DATA
51 0x61 0x00 BUS- Cycl es processor driving BNR pin
52 OxX7A 0x00 BUS- Cycles processor driving HT pin
53 0x7B 0x00 BUS- Cycl es processor driving H TM pin
54 Ox7E 0x00 BUS i s SNOOP Stalled
Fl oating Point Unit
55 0xCl 0x00 | Fp Ops RETIRED [Counter O Only]
56 0x10 0x00 FP Ops EXECUTED [Counter O Only]
57 Ox11 0x00 | Fp Assi st [Counter 1 Only]
58 0x12 0x00 FP MUL [Counter 1 Only]
59 0x13 0x00 | Fp DIV [Counter 1 Only]
60 0x14 0x00 FP Cycles Divider is Busy [Counter 0Only]
Menory Ordering
61 0x03 0x00 Mem Od - LD Bl ocks
62 0x04 0x00 Mem Od - SB Drains
63 0x05 0x00 Mem Ord - Msalign Mem Refs
I nstruction Decodi ng and Retirenent
64 0xC0 0x00 INST - Instructions Retired
65 0xC2 0x00 INST - uOps Retired
66 0xDO0 0x00 INST - Instructions decoded
Interrupts
67 0xC8 0x00 I NT - Hardware | NTERRUPTS recei ved
68 0xC6 0x00 INT - Cycles INterrupts are DI SABLED

Page- 21 , 10/29/96




Pentium Pro Processor Events (continued)

I ndex | Encoding | Umask Event

69 0xC7 0x00 INT - Cycles Ints are Pendi ng But disabl ed
Br anches

70 oxC4 0x00 Branch Insts Retired

71 0xC5 0x00 BR M ss PRED Retired

72 0xC9 0x00 BR Taken Retired

73 OxCA 0x00 BR M ss PRED Taken Retired

74 OxEO 0x00 BR I nsts Decoded

75 OxE2 0x00 BRs That m ss the BTB

76 OxE4 0x00 BR Bogus

77 OxE6 0x00 BACLEAR i s asserted
Stalls

78 OxA2 0x00 STALLS - Resource Stalls

79 0xD2 0x00 STALLS - Partial RAT Stalls
Segnent Regi ster Loads

80 0x06 0x00 Segnent Reg Loads
d ocks

81 0x79 0x00 CPU CLK UnHal t ed

82 OxFF OxFF Reser ved

83 OxFF OxFF Reser ved

84 OxFF OxFF Reser ved

85 OxFF OxFF Reser ved

86 OxFF OxFF Reser ved

87 OxFF OxFF Reser ved

88 OxFF OxFF Reser ved

89 OxFF OxFF Reser ved

90 OxFF OxFF Reser ved

91 OxFF OxFF Reser ved

92 OxFF OxFF Reser ved

118 OxFF OxFF Reser ved

119 OxFF OxFF Reser ved

Page - 22 , 10/29/96




